首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  国内免费   2篇
化学工业   1篇
金属工艺   2篇
机械仪表   10篇
无线电   2篇
一般工业技术   5篇
自动化技术   1篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
AFM-based single abrasive abrasion process is widely employed in the surface micro/nanomachining for fabrication of structures at the nanometer scale. The wear depth and roughness are significantly important in the application of these structures. To study effects of scratching directions on the wear depth and roughness within the wear mark, single groove scratching test and wear test on the surface of polished single crystal silicon were carried out using AFM with a pyramidal diamond tip. Single groove scratching tests indicated that tip geometry leads to different removal states such as cutting and plowing. At the same load, deeper wear depth and rougher surface were produced by using the scratching direction perpendicular to the long axis of the cantilever rather than parallel to the long axis of the cantilever. Surface roughness decreases with respect to the feed scratching perpendicular to the long axis of the cantilever, whereas while scratching along the long axis of the cantilever, the surface roughness is rougher at the small feed. This is attributed to the different stiffness of the cantilever along different scratching directions and different removal states between the tip and sample.  相似文献   
2.
This paper presents design and evaluation of a mechanical nanomanufacturing system for performing the nanomilling process. The nanomilling process uses a nanotool (an atomic force microscope probe tip) that is rotated at high speeds to fabricate three-dimensional (3D) nano-scale features on a sample surface. After explaining the kinematics of the two nanomilling process configurations, the nanomilling system, including the 3D piezoelectric actuator that rotates the nanotool, the nanopositioning stage that provides the feeding and depth motions, and the software program that controls the nanomilling motions are described. A measurement system is then constructed to measure the dynamic nanomilling motions. A compensation algorithm is developed to enable obtaining desired nanotool motions in the presence of frequency and amplitude-dependent nonlinearities of the 3D piezoelectric actuator. The nanomilling system is then evaluated directly by measuring the nanotool motions, and indirectly by assessing the accuracy of the fabricated nanoscale features. It was shown that the nanomilling system facilitates fabrication of complex nano-scale features with high accuracy through the high-stiffness nanotool assembly and high-frequency (compensated) nanotool motions.  相似文献   
3.
Huang JC  Li CL  Lee JW 《Scanning》2012,34(1):51-59
In this study, nanoscratching and nanomachining were conducted using an atomic force microscope (AFM) equipped with a doped diamond‐coated probe (DDESP‐10; VEECO) to evaluate the fabrication of nanopatterns on hard, Cr2N/Cu multilayer thin films. The influence of normal force, scratch speed, and repeated scratches on the properties of hard multilayer thin films was also investigated. The nanoscratch experiments led researchers to establish a probe preparation and selection criteria (PPS criteria) to enhance the stability and accuracy of machining hard materials. Experimental results indicate that the depth of grooves produced by nanoscratching increased with an increase in normal force, while an increase in the number of scratches in a single location increased the groove depth but decreased friction. Therelationships among normal force and groove depth more closely resembled a logarithmic form than other mathematical models, as did the relationship between repeated scratching and its effect on groove depth and friction. The influence of scratch speed on friction was divided into two ranges. Between 0.1 and 2 µm/s, friction decreased logarithmically with an increase in scratch speed; however, when the speed exceeded 2 µm/s, the friction appeared stable. In this study, multilayered coatings were successfully machined, demonstrating considerable promise for the fabrication of nanopatterns in multilayered coatings at the nanoscale. SCANNING 34: 51–59, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   
4.
5.
综述了扫描探针显微镜在激光纳米加工技术上应用的最新进展,介绍了纳米结构的形成机理。  相似文献   
6.
ABSTRACT: The vibration behavior of an atomic force microscope [AFM] cantilever with a crack during the nanomachining process is studied. The cantilever is divided into two segments by the crack, and a rotational spring is used to simulate the crack. The two individual governing equations of transverse vibration for the cracked cantilever can be expressed. However, the corresponding boundary conditions are coupled because of the crack interaction. Analytical expressions for the vibration displacement and natural frequency of the cracked cantilever are obtained. In addition, the effects of crack flexibility, crack location, and tip length on the vibration displacement of the cantilever are analyzed. Results show that the crack occurs in the AFM cantilever that can significantly affect its vibration response.PACS: 07.79.Lh; 62.20.mt; 62.25.Jk.  相似文献   
7.
以原子力显微镜(AFM)为加工工具进行了纳米级加工实验,对不同加工条件下的材料去除过程和切屑形态进行了研究.切屑形态通过扫描电子显微镜(SEM)进行观察,分析了不同垂直载荷、循环次数和针尖加工方向下铝铜被加工表面的切屑形成过程.实验结果表明:低栽下切屑呈细小断屑,散布在加工区域周围;随着垂直载荷的增加,切屑逐渐变成连续的带状切屑.不同循环次数、针尖加工面时切屑形成都有很大影响.在此基础上,对比分析了相同实验条件下,不同力学性能材料的切屑形成过程.最后,通过检测被加工表面得出被加工表面质量与切屑的数量和形态之间的关系,提出了改善被加工表面质量的方法,以帮助人们更好地理解基于AFM的纳米级加工技术.  相似文献   
8.
以单晶铜微探针纳米刻划加工为例,提出了一种分子动力学模拟与实验的间接对比方法,依次开展了工件材料的弹性常量的定量对比、工件材料机械性能的纳米压痕测量的定量对比、已加工表面形貌的定性对比。单晶铜工件压缩、剪切、拉伸和纳米压痕的分子动力学模拟显示,分子动力学模拟体系的弹性模量与实验测得值相同,压痕后工件表面材料堆积的对称特性与实验结果相符。研究结果表明,所使用的嵌入原子势能函数可以精确地描述单晶铜工件中铜原子之间的相互作用,纳米机械加工的分子动力学模拟具有较高的精度,并且可以很好地预测纳米机械加工的实验结果。  相似文献   
9.
One of the major tasks in a molecular dynamics (MD) simulation is the selection of adequate potential functions, from which forces are derived. If the potentials do not model the behaviour of the atoms correctly, the results produced from the simulation would be useless. Three popular potentials, namely, Lennard-Jones (LJ), Morse, and embedded-atom method (EAM) potentials, were employed to model copper workpiece and diamond tool in nanometric machining. From the simulation results and further analysis, the EAM potential was found to be the most suitable of the three potentials. This is because it best describes the metallic bonding of the copper atoms; it demonstrated the lowest cutting force variation, and the potential energy is most stable for the EAM.  相似文献   
10.
In this paper, a novel technique is presented for the characterization at the nanoscale of plasma-assisted deposit on polyethylene-terephthalate (PET) polymer films. In previous studies, some microcharacterization and morphology analyses of plasma-assisted deposition were performed by atomic force microscopy (AFM). In the work presented here, we analysed the thickness and homogeneity of plasma-assisted deposits by focused ion beam (FIB). This technique with 5-7 nm resolution requires no sample preparation and relies on a sequence of operations on a relatively fast time scale, so that it is easy to make thorough investigations of the sample. We performed electron and ion imaging of the surface of the material, and a subsequent ionic cutting allowed the study of the morphology of the same sample. We developed a novel approach to the edge detection techniques (EDT) in images for a fast evaluation and monitoring of the deposited layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号