首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9017篇
  免费   1735篇
  国内免费   563篇
电工技术   807篇
综合类   593篇
化学工业   985篇
金属工艺   208篇
机械仪表   958篇
建筑科学   177篇
矿业工程   93篇
能源动力   218篇
轻工业   116篇
水利工程   32篇
石油天然气   52篇
武器工业   72篇
无线电   3384篇
一般工业技术   2412篇
冶金工业   85篇
原子能技术   63篇
自动化技术   1060篇
  2024年   38篇
  2023年   256篇
  2022年   180篇
  2021年   311篇
  2020年   421篇
  2019年   366篇
  2018年   377篇
  2017年   481篇
  2016年   474篇
  2015年   460篇
  2014年   600篇
  2013年   542篇
  2012年   597篇
  2011年   694篇
  2010年   467篇
  2009年   520篇
  2008年   540篇
  2007年   606篇
  2006年   530篇
  2005年   433篇
  2004年   373篇
  2003年   311篇
  2002年   255篇
  2001年   210篇
  2000年   231篇
  1999年   175篇
  1998年   159篇
  1997年   73篇
  1996年   98篇
  1995年   73篇
  1994年   81篇
  1993年   60篇
  1992年   65篇
  1991年   31篇
  1990年   29篇
  1989年   34篇
  1988年   19篇
  1987年   7篇
  1986年   12篇
  1985年   20篇
  1984年   33篇
  1983年   33篇
  1982年   24篇
  1981年   2篇
  1980年   2篇
  1975年   2篇
  1962年   2篇
  1956年   1篇
  1954年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
2.
In the past, thinking of carrying electronic devices inside our bodies was only posed by non-real scenarios. The emergence of insertable devices has changed this. Since this technology is still in its initial development stages, few studies have investigated factors that influence its acceptance. This paper analyzes the predictors of the intention to use non-medical insertable devices in two Latin American contexts. We used partial least squares structural equation modeling to examine whether six constructs predicted intention to use insertable devices. A questionnaire was administered to undergraduate students located in Colombia and Chile (n = 672). We also examined whether these predictors influenced intention differently for both of them. Four common constructs significantly and positively influenced both Chilean and Colombian respondents to use insertable devices (hedonic motivation, habit, performance expectancy, and social influence). Also, the habit has a complementary mediating effect on the relationship between social influence and behavioral intention. By contrast, effort expectations were a positive and significant predictor, but only among Chilean respondents. Findings suggest that when technologies are emerging, well-known predictors of intention (e.g., performance and effort expectations) are less influential than predictors related to self-efficacy (e.g., habit and hedonic motivation). The use of insertable devices has a significant impact on society. Thus, a better understanding of what motivates their use has implications for both academia and industry.  相似文献   
3.
Ferrites are materials of interest due to their broad applications in high technological devices and a lot of research has been focused to synthesize new ferrites. In this regard, an effort has been devoted to synthesize spinel Pr–Ni co-substituted strontium ferrites with a nominal formula of Sr1-xPrxFe2-yNiyO4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0). The cubic structure of pure and Pr–Ni co-substituted strontium ferrite samples calcinated at 1073 K for 3 h has been confirmed through X-ray diffraction (XRD). Average sizes of crystallites (18–25 nm) have been estimated from XRD analysis and nanometer particle sizes of synthesized ferrites have been further verified by scanning electron microscopy (SEM). SEM results have also shown that particles are mostly agglomerated and all the samples possess porosity. It has been observed that at 298 K, the values of resistivity (ρ) increase, while that of AC conductivity, dielectric loss, and dielectric constants decrease with increasing amounts of Pr3+ and Ni2+ ions. The values of dielectric parameters initially decrease with frequency and later become constant and can be explained on the basis of dielectric polarization. Electrochemical impedance spectroscopy (EIS) studies show that the charge transport phenomenon in ferrite materials is mainly controlled via grain boundaries. Overall, synthesized ferrite materials own enhanced resistivity values in the range of 1.38 × 109–1.94 × 109 Ω cm and minimum dielectric losses, which makes them suitable candidates for high frequency devices applications.  相似文献   
4.
《Ceramics International》2020,46(4):4148-4153
The ferroelectric photovoltaic (FPV) effect obtained in inorganic perovskite ferroelectric materials has received much attention because of its large potential in preparing FPV devices with superior stability, high open-circuit voltage (Voc) and large short-circuit current density (Jsc). In order to obtain suitable thickness for the ferroelectric thin film as light absorption layer, in which, the sunlight can be fully absorbed and the photo-generated electrons and holes are recombined as few as possible, we prepare Pb0.93La0.07(Zr0.6Ti0.4)0.9825O3 (PLZT) ferroelectric thin films with different layer numbers by the sol-gel method and based on these thin films, obtain FPV devices with FTO/PLZT/Au structure. By measuring photovoltaic properties, it is found that the device with 4 layer-PLZT thin film (~300 nm thickness) exhibits the largest Voc and Jsc and the photovoltaic effect obviously depends on the value and direction of the poling electric field. When the device is applied a negative poling electric field, both the Voc and Jsc are significantly higher than those of the device applied the positive poling electric field, due to the depolarization field resulting from the remnant polarization in the same direction with the built-in electric field induced by the Schottky barrier, and the higher the negative poling electric field, the larger the Voc and Jsc. At a -333 kV/cm poling electric field, the FPV device exhibits the most superior photovoltaic properties with a Voc of as high as 0.73 V and Jsc of as large as 2.11 μA/cm2. This work opens a new way for developing ferroelectric photovoltaic devices with good properties.  相似文献   
5.
Abstract

Ba0.95Ca0.05Ti1-xZrxO3 (BCTZO) ceramics were prepared by a solid state reaction method. The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray absorption near edge structure (XANES). The ceramics exhibit a pure perovskite structure. The average grain size gradually decreases with increasing Zr concentration. XANES results indicate that the intensities of pre-edge peaks dropped with increasing Zr concentration. The BCTZO ceramic of x?=?0.05 has the optimum electrical properties with the maximum dielectric constant (ε'm), remanent polarization (2Pr), coercive electric field (2Ec) and piezoelectric charge constant (d33) of 7,244, 12.54 (μC/cm2), 5.29 (kV/cm) and 288 (pC/N), respectively.  相似文献   
6.
Bromine-based flow batteries (Br-FBs) are considered one of the most promising energy storage systems due to their features of high energy density and low cost. However, they generally suffer from uncontrolled diffusion of corrosive bromine particularly at high temperatures. That is because the interaction between polybromide anions and the commonly used complexing agent (N–methyl–N–ethyl–pyrrolidinium bromide [MEP]) decreases with increasing temperatures, which causes serious self-discharge and capacity fade. Herein, a novel bromine complexing agent, 1–ethyl–2–methyl–pyridinium bromide (BCA), is introduced in Br-FBs to solve the above problems. It is proven that BCA can combine with polybromide anions very well even at a high temperature of 60 °C. Moreover, the BCA contributes to decreasing the electrochemical polarization of Br/Br2 couple, which in turn improves their power density. As a result, a zinc–bromine flow battery with BCA as the complexing agent can achieve a high energy efficiency of 84% at 40 mA cm−2, even at high temperature of 60 °C and it can stably run for more than 400 cycles without obvious performance decay. This paper provides an effective complexing agent to enable a wide temperature range Br-FB.  相似文献   
7.
《Ceramics International》2021,47(19):27177-27187
BaZrO3-based materials doped with a trivalent cation have excellent chemical stability and relatively high proton conductivity which makes them potential proton conducting oxide materials for various electrochemical device applications such as hydrogen processing, high-temperature electrolysis, and solid electrolyte in fuel cells. However, BaZrO3 showed poor sinterability, requiring high sintering temperatures (1700–2100 °C) with longtime sintering (20–100 h) to achieve the desired microstructure and grain growth. This sintering problem can be solved by slightly doping BaZrO3 with a sintering aid element. Therefore, in this study, two different zirconate proton conductors: BaZr0·9Y0·1O3-α (BZY) and BaZr0·955Y0·03Co0·015O3-α (BZYC) were sintered in an air atmosphere and an oxygen atmosphere for 20 h in the temperature range of 1500–1640 °C. The sinterability was evaluated by analyzing the XRD diffraction patterns, lattice constant, lattice strain, crystallite size, relative density, open porosity, closed porosity, surface morphology, grain size, and grain boundary distribution, using the XRD, SEM, EDX, and Archimedes density measurement methods. It is concluded that in an oxygen atmosphere, sintering aid Co not only improves the relative density but also produces highly dense fine particles with clear grain boundaries which are promising for electrochemical hydrogen device applications.  相似文献   
8.
本文介绍了混凝土结构的压电体波和表面波检测的主要进展,对两种压电声波检测的优缺点进行了总结。体波检测设备一般埋入混凝土内部,需要选择合理的检测部位,检测结果较为精确;声表面波检测无需选择特定的部位,但是检测深度有限。在实际检测工作过程中,可以联合两种方法相互验证。  相似文献   
9.
《Ceramics International》2020,46(3):2868-2876
In order to improve the stability of PZT-based sensors, the mechanical, dielectric, ferroelectric and piezoelectric properties of PZT-5H under impact load were studied experimentally by using the separated Hopkinson pressure bar (SHPB) with an electrical output measurement device. At the same time, the experimental study on the material properties of PZT-5H before and after the impact was carried out. The effect of impact cracks on the output voltage of PZT-5H was also analyzed. The results show that the dynamic piezoelectric constants of PZT-5H under low stress impact (10–50 MPa) are different from those under quasi-static state, and the empirical relationship between them and the peak stress is obtained through experiments. The dielectric properties of PZT-5H did not change under low stress impact, but micro-cracks occurred in the material and dielectric loss increased at high frequencies. Under short circuit, the residual polarization intensity of PZT-5H decreases sharply due to impact load. While the impact load causes the secondary polarization and the increase of the residual polarization intensity of PZT under open circuit. When the stress is over 45 MPa, the PZT-5H breaks. The formation of cracks causes abnormal discharge voltage and gap discharge.  相似文献   
10.
Poor strength, infection, leakage, long procedure times, and inflammation limit the efficacy of common tissue sealing devices in surgeries and trauma. Light-activated sealing is attractive for tissue sealing and repair, and can be facilitated by the generation of local heat following absorption of nonionizing laser energy by chromophores. Here, the inherent ability of biomaterials is exploited to absorb nonionizing, mid-infrared (midIR) light in order to engender rapid photothermal sealing and repair of soft tissue wounds. In this approach, the biomaterial simultaneously acts as a photothermal convertor as well as a biosealant, which dispenses the need for exogeneous light-absorbing nanoparticles or dyes. Biomechanical recovery, mathematical modeling, histopathology analyses, tissue strain mapping using digital imaging correlation, and visualization of the biosealant-tissue interface using hyperspectral imaging indicate superior performance of midIR sealing in live mice compared to conventional sutures and glue. The midIR-biosealant approach demonstrates rapid sealing of soft tissues, improves cosmesis, lowers potential for scarring, obviates safety concerns because of the nonionizing light used, and allows adoption of a wide diversity of biomaterials. Taken together, the studies demonstrate a novel advance both in biomaterials for surgical sealing along with the use of nonionizing midIR light, with high potential for clinical translation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号