首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   5篇
  国内免费   1篇
电工技术   1篇
综合类   1篇
化学工业   1篇
金属工艺   5篇
机械仪表   31篇
石油天然气   1篇
一般工业技术   3篇
冶金工业   2篇
  2024年   1篇
  2023年   8篇
  2022年   4篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   2篇
  2014年   1篇
  2012年   3篇
  2011年   4篇
  2007年   3篇
  2006年   4篇
  2003年   1篇
排序方式: 共有45条查询结果,搜索用时 0 毫秒
1.
对高速精密水润滑电主轴关键技术进行综述.概述了水润滑电主轴的结构设计及冷却技术;详细评述了水润滑轴承的结构形式、节流技术、材料选择、静动态特性分析与测试技术以及轴向密封设计等轴承技术;最后介绍了水润滑电主轴国内外应用现状,并对该电主轴的技术发展趋势进行了展望.  相似文献   
2.
网状表面织构对水润滑轴承摩擦磨损性能的影响   总被引:1,自引:0,他引:1  
为研究网状表面织构对水润滑轴承摩擦性能的影响,利用ANSYS对布置有不同密度和深度的轴承模型进行流固耦合仿真,研究不同网纹条件下水膜的承载能力;使用3D打印技术制备不同深度与密度的网状纹理的试样,使用CBZ-1摩擦磨损试验机进行摩擦试验并实时采集摩擦因数,利用表面轮廓仪对试样磨损表面的形貌进行观测.仿真结果表明:在忽略...  相似文献   
3.
水润滑橡胶尾轴承模态影响因素分析   总被引:2,自引:0,他引:2  
水润滑橡胶尾轴承由于其减振降噪的优良特性,在舰船中的应用越来越广泛,研究水润滑橡胶尾轴承的动态特性对其工作可靠性具有重要意义。采用有限元计算软件ANSYS对水润滑橡胶尾轴承及其内衬、衬套进行有限元模态分析,研究各种结构形式、不同材料属性对水润滑橡胶尾轴承动态特性的影响规律及其水平。研究表明,水润滑橡胶尾轴承各阶固有频率分布比较集中,其低阶模态主要受到内衬结构及其材料属性的影响,高阶模态主要受到衬套结构及其材料属性的影响。  相似文献   
4.
针对舰艇推进系统用水润滑轴承低噪声设计需求,研制改性尼龙(PA)的轴承材料及轴承样机,利用多功能摩擦磨损试验机对改性PA材料样品进行摩擦学性能试验,并与丁腈橡胶和赛龙SXL材料的摩擦学性能进行对比;在水润滑轴承试验台上开展PA轴承样机转速特性试验和载荷特性试验,获取不同比压和转速下摩擦因数和振动特性数据。研究结果表明:与丁腈橡胶和赛龙SXL材料相比,改性PA材料具有摩擦因数小、磨损率低的优点;低转速下,水润滑轴承摩擦因数随转速增大而减小,随比压增大而增大,转速增加至100 r/min后,摩擦因数变化趋势逐渐减缓;在工作转速范围内改性PA材料水润滑轴承无异常摩擦振动和噪声。研究结果为舰艇低噪声水润滑艉轴承设计提供参考。  相似文献   
5.
为了研究沟槽结构对船用水润滑轴承润滑特性的影响机制,采用有限元法,通过对简化后的椭圆形沟槽的二维模型进行流体动力学CFD分析,从迹线以及涡流等方面分析沟槽结构参数对沟槽内部流体特征的影响,得到不同状态下沟槽内部的压力轮廓,并分析沟槽结构参数对水润滑轴承摩擦因数的影响和轴承的润滑机制。结果表明:沟槽的大小影响轴承间隙内流体的流通面积,沟槽的结构特征影响沟槽内的流体黏度。研究结果可为水润滑轴承优化设计提供参考。  相似文献   
6.
轮缘推进电机采用海水润滑,由于海水黏度低,难以建立有效的动压润滑效应。同时随着轮缘推进器的推进功率不断提升,其传递的推力也显著升高。这些问题以及需求对轮缘推进器推力轴承的润滑性能提出了新的挑战。提出一种满足轮缘推进电机推进需求的推力轴承设计方案,结合流体动力润滑理论,建立水润滑推力轴承流体动力学模型,基于有限单元法计算了推力轴承的压力分布和最大温度分布,以及雷诺数和摩擦功耗的变化规律。结果表明:该轮缘推进电机推力轴承的压力集中分布在轴瓦中间部分,并随轴瓦倾角和膜厚而变化;温度分布随转速基本保持不变;高速情况下雷诺数大幅降低;摩擦功耗随转速持续增加。  相似文献   
7.
水润滑轴承材料弹流润滑性能比较研究   总被引:1,自引:0,他引:1  
利用考虑惯性力的Reynolds方程,对水润滑条件下的实验橡胶滑块与钢环的弹流润滑问题进行了数值模拟,并分别与塑料、陶瓷材料的数值模拟结果进行了对比分析。结果表明,在水润滑条件下,惯性力对水膜压力的影响很小,而对水膜厚度及温度的影响很大。同样情况下,考虑惯性力时,最小膜厚增加,最高温度降低。橡胶/钢摩擦副中,惯性力对膜厚的影响是不可忽略的。陶瓷/钢摩擦副中,考虑惯性力时对温度影响更大。  相似文献   
8.
橡胶层厚度和硬度对水润滑整体式轴承摩擦因数的影响   总被引:3,自引:0,他引:3  
以自然水为润滑介质,用MPV-20B型摩擦磨损试验机分别研究了不同橡胶层厚度和硬度的水润滑整体式轴承的摩擦因数,得到了它的变化规律并对作用机理进行了分析。结果表明:橡胶层厚度增大,摩擦因数有减小的趋势;橡胶层硬度增大,摩擦因数有增大的趋势。  相似文献   
9.
The influence of turbulence and convective fluid inertia in a water-lubricated journal bearing was investigated using two types of models: a “conventional” solution based on traditional lubrication theory (Reynolds equation) and a more rigorous computational fluid dynamics (CFD) program containing a full Navier-Stokes solution. The calculations reveal that turbulence accounts for around 50% of the load capacity in the water-lubricated bearing studied, highlighting the importance of accurate characterization of turbulence in such applications. Convective inertia, also referred to as transport inertia because it depends only on the spatial parameters within the film rather than time-dependent journal motions, was found to lower the static film pressures (load capacity) by about 6% compared to an inertialess solution.

Hydrodynamic pressures calculated by the conventional Reynolds solution were initially about 30% lower than those of the more rigorous CFD model for the water-lubricated bearing operating in the turbulent regime. The mesh spacing of the conventional model was refined and a method was developed to adjust the turbulence model within the Reynolds solution as a function of the pivot Reynolds number. These refinements brought the calculated bearing load capacities and power losses of the conventional Reynolds model into better agreement with those of the CFD model for a broad range operating conditions.  相似文献   

10.
蒋红琰  陈家俊 《表面技术》2016,45(11):41-47
目的为了提高水轴承高速下的减阻效果以及预测水轴承的空蚀区域,研究了高速水静压轴承的空化与减阻性能。方法基于低雷诺数Launder-Sharma模型和空化气泡的动力学模型,分析了不同工作参数下水轴承的空化程度研究及微形貌特征对减阻效果的影响。结果空化气泡主要出现在静压轴承水腔之间的负压封水面及小孔节流器附近,空化气泡溃灭时容易造成轴承材料的空蚀破坏。高速小偏心率时,相比流向和展向微形貌,凸柱微形貌特征表面具有较好的减阻效果,且减阻效果受轴颈线速度的影响较大。结论转速、供水压力和偏心率等物理参数影响水静压轴承空化气泡分布和静态性能,微形貌界面的速度滑移有利于提高减阻效果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号