首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7333篇
  免费   161篇
  国内免费   222篇
电工技术   603篇
综合类   184篇
化学工业   1444篇
金属工艺   489篇
机械仪表   471篇
建筑科学   435篇
矿业工程   61篇
能源动力   567篇
轻工业   179篇
水利工程   25篇
石油天然气   114篇
武器工业   28篇
无线电   463篇
一般工业技术   864篇
冶金工业   339篇
原子能技术   156篇
自动化技术   1294篇
  2024年   6篇
  2023年   74篇
  2022年   99篇
  2021年   160篇
  2020年   117篇
  2019年   128篇
  2018年   129篇
  2017年   178篇
  2016年   186篇
  2015年   211篇
  2014年   326篇
  2013年   475篇
  2012年   392篇
  2011年   583篇
  2010年   401篇
  2009年   490篇
  2008年   379篇
  2007年   422篇
  2006年   398篇
  2005年   397篇
  2004年   353篇
  2003年   353篇
  2002年   247篇
  2001年   136篇
  2000年   117篇
  1999年   162篇
  1998年   156篇
  1997年   104篇
  1996年   99篇
  1995年   93篇
  1994年   60篇
  1993年   45篇
  1992年   39篇
  1991年   38篇
  1990年   20篇
  1989年   33篇
  1988年   26篇
  1987年   14篇
  1986年   10篇
  1985年   9篇
  1984年   17篇
  1983年   3篇
  1982年   9篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1977年   5篇
  1976年   2篇
  1975年   5篇
排序方式: 共有7716条查询结果,搜索用时 31 毫秒
1.
In this study, the effects of cell temperature and relative humidity on charge transport parameters are numerically analyzed. In order to perform this analysis, three-dimensional and anisotropic numerical models are developed. The numerical models are integrated into the experimental values for anisotropic electrical conductivities, as depending on cell temperature and relative humidity, that were obtained from our previous study. The achieved results indicate that the values of current densities in the in-plane direction increase with increasing cell temperature and relative humidity, while the current densities reach a maximum in the rib regions for both the numerical model at the through-plane direction. The behaviors of electrolyte potentials are similar with changes in the cell temperature and relative humidity. In addition, the cathode electrical potentials in both the in-plane direction and through-plane direction do not change to a considerable amount with increasing cell temperature and relative humidity.  相似文献   
2.
The motion trajectory of hydrogen leakage is an essential safe issue for the application of hydrogen energy. A dimensionless fast-running motion trajectory prediction model is proposed to predict the dispersion characteristics of the buoyant jet of hydrogen leakage for the accident. The impact of different leakage angles, leakage velocity and thermal stratification of ambient air on hydrogen leakage behavior was analyzed. The new developed model was verified by experimental results in literatures. Leakage hydrogen can flow upwards freely in a uniform environment. However, it shows an oscillating trajectory at a certain height in a thermally stratified environment, which is so called “locking phenomenon”. The trajectory of hydrogen leakage is upward and hydrogen gathers at the top of the space to form stratification in a uniform environment, while the hydrogen leakage shows an oscillating trajectory at a certain height in a thermal stratification environment. With the increase of Froude number Fr, it shows that the stable height and maximum height of the leakage airflow have a trend of rising first and then falling in a thermally stratified environment. The findings are expected to give guidance in real-world situations, for example, a larger Fr value and a larger temperature gradient can lead to a decrease in the stable height in the thermally stratified environment. It is found that the fitting of the stable height with different temperature gradients satisfies the power function relationship. This work is expected to be helpful for reducing hydrogen leakage accumulation and explosion risk.  相似文献   
3.
Mass transfer in polycrystalline Yb2SiO5 wafers with precise composition control was evaluated and analyzed by oxygen permeation experiments at high temperatures using an oxygen tracer. Oxygen permeation proceeded due to mutual grain boundary diffusion of oxide ions and Yb ions without synergistic effects such as acceleration or suppression. The oxygen shielding properties of Yb2SiO5 were compared with those of the other line compounds such as Yb2Si2O7 and Al2O3 based on the determined mass transfer parameters. It was found that the more preferentially an oxide ion diffuses in the grain boundary compared to the interior of the grain, the greater the effect of suppressing the movement of the oxide ion by applying an oxygen potential gradient becomes.  相似文献   
4.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
5.
This paper studies the restoration of a transmission system after a significant disruption such as a natural disaster. It considers the co-optimization of repairs, load pickups, and generation dispatch to produce a sequencing of the repairs that minimizes the size of the blackout over time. The core of this process is a Restoration Ordering Problem (ROP), a non-convex mixed-integer nonlinear program that is outside the capabilities of existing solver technologies. To address this computational barrier, the paper examines two approximations of the power flow equations: The DC model and the recently proposed LPAC model. Systematic, large-scale testing indicates that the DC model is not sufficiently accurate for solving the ROP. In contrast, the LPAC power flow model, which captures line losses, reactive power, and voltage magnitudes, is sufficiently accurate to obtain restoration plans that can be converted into AC-feasible power flows. An experimental study also suggests that the LPAC model provides a robust and appealing tradeoff between accuracy and computational performance for solving the ROP.  相似文献   
6.
This paper investigates a renewable energy resource’s application to the Load–Frequency Control of interconnected power system. The Proportional-Integral (PI) controllers are replaced with Proportional-Integral Plus (PI+) controllers in a two area interconnected thermal power system without/with the fast acting energy storage devices and are designed based on Control Performance Standards (CPS) using conventional/Beta Wavelet Neural Network (BWNN) approaches. The energy storing devices Hydrogen generative Aqua Electroliser (HAE) with Fuel cell and Redox Flow Battery (RFB) are incorporated to the two area interconnected thermal power system to efficiently damp out the electromechanical oscillations in the power system because of their inherent efficient storage capacity in addition to the kinetic energy of the generator rotor, which can share the sudden changes in power requirements. The system was simulated and the frequency deviations in area 1 and area 2 and tie-line power deviations for 5% step- load disturbance in area 1 are obtained. The comparison of frequency deviations and tie-line power deviations of the two area interconnected thermal power system with HAE and RFB designed with BWNN controller reveals that the PI+ controller designed using BWNN approach is found to be superior than that of output response obtained using PI+ controller. Moreover the BWNN based PI+ controller exhibits a better transient and steady state response for the interconnected power system with Hydrogen generative Aqua Electroliser (AE) unit than that of the system with Redox Flow Battery (RFB) unit.  相似文献   
7.
In recent years, many tidal turbine projects have been developed using composites blades. Tidal turbine blades are subject to ocean forces and sea water aggressions, and the reliability of these components is crucial to the profitability of ocean energy recovery systems. The majority of tidal turbine developers have preferred carbon/epoxy blades, so there is a need to understand how prolonged immersion in the ocean affects these composites. In this study the long term behaviour of different carbon/epoxy composites has been studied using accelerated ageing tests. A significant reduction of composite strengths has been observed after saturation of water in the material. For longer immersions only small further changes in these properties occur. No significant changes have been observed for moduli nor for composite toughness. The effect of sea water ageing on damage thresholds and kinetics has been studied and modelled. After saturation, the damage threshold is modified while kinetics of damage development remain the same.  相似文献   
8.
As the SARS-CoV-2 (COVID-19) pandemic has run rampant worldwide, the dissemination of misinformation has sown confusion on a global scale. Thus, understanding the propagation of fake news and implementing countermeasures has become exceedingly important to the well-being of society. To assist this cause, we produce a valuable dataset called FibVID (Fake news information-broadcasting dataset of COVID-19), which addresses COVID-19 and non-COVID news from three key angles. First, we provide truth and falsehood (T/F) indicators of news items, as labeled and validated by several fact-checking platforms (e.g., Snopes and Politifact). Second, we collect spurious-claim-related tweets and retweets from Twitter, one of the world’s largest social networks. Third, we provide basic user information, including the terms and characteristics of “heavy fake news” user to present a better understanding of T/F claims in consideration of COVID-19. FibVID provides several significant contributions. It helps to uncover propagation patterns of news items and themes related to identifying their authenticity. It further helps catalog and identify the traits of users who engage in fake news diffusion. We also provide suggestions for future applications of FibVID with a few exploratory analyses to examine the effectiveness of the approaches used.  相似文献   
9.
10.
The present work illustrates the effect of quasi-hydrostatic pressure on the positions and widths of the homogeneity ranges of the intermetallic phases TiFe and TiFe2 at high temperatures. The experiments were performed with Ti–Fe diffusion couples that were heat treated in a multi-anvil press at 2.5 GPa. The solubility limits of the phases were derived from the concentration profiles that were measured using electron probe microanalysis. It was found that the homogeneity ranges of TiFe and TiFe2 extend to higher titanium concentrations, if the pressure is applied. The positions of the phase boundaries of the intermetallics on the iron-rich side are not affected by the pressure. The accuracy of the experimental data including the homogeneity ranges and temperatures was verified by comparing the homogeneity ranges of β-Ti(Fe), α/δ-Fe(Ti) and γ-Fe measured in this study with the homogeneity ranges taken from literature. The pressure was calibrated using the pressure-induced phase transitions of bismuth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号