首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
建筑科学   13篇
一般工业技术   1篇
  2017年   1篇
  2016年   1篇
  2013年   2篇
  2011年   1篇
  2010年   4篇
  1997年   3篇
  1985年   2篇
排序方式: 共有14条查询结果,搜索用时 500 毫秒
1.
Gemauerte Konstruktionen lassen sich sehr effektiv mit Faserverbundwerkstoffen nachträglich verstärken. Dabei ist es sinnvoll, den Faserverbundwerkstoff direkt auf der Mauerwerksoberfläche durch das Einlegen von Fasergelegen in eine Klebstoffmatrix herzustellen. Anwendungsgebiete dieses Verfahrens sind die Umschnürung gemauerter Pfeiler, die Verstärkung von Wänden unter Scheibenbeanspruchung und die zugfeste Bewehrung biegebeanspruchter Bauteile. Die wichtigsten Ergebnisse umfangreicher experimenteller Untersuchungen, die an der Universität Kassel in den vergangenen Jahren durchgeführt wurden, werden vorgestellt und erläutert. Post‐strengthening of masonry structures with fibre reinforced polymers. Fiber reinforced polymeres can be used effectively for post‐strengthening of masonry structures. In this context it is reasonable to manufacture the FRP material by wet‐lay‐up directly on the surface of the masonry structure. Possible applications of the method are the confinement of columns as well as post‐strengthening of in‐plane and out‐of‐plane loaded structures. The main results of experimental research carried out at the University of Kassel during the last years will be presented.  相似文献   
2.
Christoph Duppel 《Bautechnik》2010,87(11):708-716
Die Hagia Sophia in Istanbul ist eines der baugeschichtlich wichtigsten und ingenieurmäßig bemerkenswertesten Bauwerke der letzten 1500 Jahre. Aufgrund restauratorischer Sicherungsarbeiten und der damit verbundenen Einrüstung der Hauptkuppel war in den letzten Jahren die einmalige Gelegenheit gegeben, den geometrischen und materiellen Irregularitäten und Diskontinuitäten, die aus mehreren Teileinstürzen und Wiederaufbauten herrühren, mit Hilfe zerstörungsfreier geophysikalischer Untersuchungsverfahren nachzugehen. Damit konnte der heutige Bestand und Zustand der aus Ziegeln gemauerten Hauptkuppel und der aus Naturstein errichteten vier Hauptpfeiler intensiv erkundet werden. Die erlangten neuen Kenntnisse zum Konstruktionsgefüge erlaubten einerseits die Entwicklung differenzierter Berechnungsmodelle, mit deren Hilfe eine Aussage zum Lastfluss, den Spannungszuständen und dem Stabilitätsverhalten der Hagia Sophia möglich wurde und bieten andererseits Grundlage, um die Frage der Erdbebengefährdung mit einer der historischen Bedeutung des Gebäudes entsprechenden Zuverlässigkeit zu beantworten. Im vorliegenden ersten Teil des Berichtes zum DFG‐Projekt “Ingenieurwissenschaftliche Untersuchungen an der Hauptkuppel und den Hauptpfeilern der Hagia Sophia in Istanbul“ [1] wird über die Erkundungen am Bauwerk berichtet. Der im nächsten Heft erscheinende zweite Teil wird dann die Folgerungen, die sich daraus für das Tragverhalten und Tragvermögen des Gebäudes ergeben, zum Inhalt haben. Engineering Studies on the Hagia Sophia in Istanbul — Part 1: The Structural Characteristics. The Hagia Sophia in Istanbul is one of the most significant and remarkable buildings of the past 1500 years, both from an architectural history and an engineering point of view. Due to restoration work and the related scaffolding of the main dome, the past years have provided a unique opportunity to investigate the geometrical and material irregularities and discontinuities resulting from several partial collapses and rebuilding, by using nondestructive geophysical analytical methods. They allowed a thorough exploration of the present substance and condition of the main dome’s brick masonry and of the four main pillars built from natural stone. The new findings regarding the structural characteristics allowed, on the one hand, developing differentiated calculation models by means of which statements on load flow, stress states and stability behavior of the Hagia Sophia became possible and on the other, provided a basis for answering the question about the earthquake risks with a reliability corresponding to the historical significance of the building. The first part of the report on the DFG project “Engineering Studies on the Main Dome and Main Pillars of the Hagia Sophia in Istanbul” describes the explorations of the building. The second part, which will appear in the next issue, will present the conclusions resulting for the structural behavior and structural capacity of the building.  相似文献   
3.
Christoph Duppel 《Bautechnik》2010,87(12):790-799
Die Hagia Sophia in Istanbul, eines der bau‐ und kulturgeschichtlich wichtigsten und ingenieurmäßig bemerkenswertesten Bauwerke der letzten 1500 Jahre, war im Rahmen des DFG‐Projektes “Ingenieurwissenschaftliche Untersuchungen an der Hauptkuppel und den Hauptpfeilern der Hagia Sophia in Istanbul” [1] Gegenstand umfänglicher Forschungstätigkeit, erst zum Konstruktionsgefüge, dann zum Tragverhalten. Ein optimierter Einsatz zerstörungsfreier, geophysikalischer Untersuchungsmethoden ermöglichte erstmals eine umfassende Aussage zum Bestand und inneren Zustand der tragenden Bauteile, wie sie sich über die Jahrhunderte und mehrere Teileinstürze hinweg bis zum heutigen Tag entwickelt haben. Hierüber wurde im ersten Teil dieses Beitrages berichtet [15]. Der sich nun anschließende zweite Teil beschäftigt sich mit dem Tragverhalten der Hagia Sophia. Ausgehend von grundsätzlichen Überlegungen zum Lastfluss in Pendentifkuppeln werden die erarbeiteten neuen Kenntnisse über die Bauwerksstruktur in ihrer statischen Bedeutung bewertet, den bisherigen Berechnungsgrundlagen vergleichend gegenübergestellt und im Rahmen eigener Studien zum Lastfluss und Tragverhalten unter statischer Belastung eingesetzt. Hinsichtlich der Frage der Erdbebengefährdung wird ein Ausblick auf ein Anschlussprojekt gegeben, welches — auf den erzielten Forschungsergebnissen aufbauend — die dynamische Analyse der Hagia Sophia zum Inhalt hat. Engineering Studies on the Hagia Sophia in Istanbul — Part 2: On the Structural Behavior. The Hagia Sophia in Istanbul, which is one of the most important and remarkable buildings of the past 1500 years from the point of view of architectural and cultural history as well as from a civil‐engineering perspective, has been the object of extensive research — first, regarding its structure and then, its structural behavior as the subject of the DFG Project ”Engineering Studies of the Main Dome and Main Pillars of the Hagia Sophia in Istanbul”. The optimized use of non‐destructive, geo‐physical methods of examination allowed, for the first time, making comprehensive statements on the existing structure and the internal condition of the structural parts as they have developed over the centuries and through several partial collapses to this day. A report on this can be found in the first part of my article. This second part focuses on the structural behavior of the Hagia Sophia. Departing from fundamental deliberations on load flow in pendentive domes, the importance of the new findings about the structural characteristics for structural behavior is evaluated, compared to the bases for calculation used before, and used in the context of studies on load flow and structural behavior under a structural load. With regard to the issue of earthquake risk, an outlook is provided on a follow‐up project that will focus on a dynamic analysis of the Hagia Sophia, based on these research results.  相似文献   
4.
5.
6.
7.
8.
《Mauerwerk》2017,21(5):320-331
Dedicated to Prof. Dr.‐Ing. Carl‐Alexander Graubner on the occasion of his 60th birthday Masonry members have to resist vertical loads and bending moments about the weak axis due to rotation of adjacent slabs. If the compression member is part of the bracing system, there are also bending moments about the strong axis. This paper deals with the load‐bearing capacity of biaxially eccentrically compressed unreinforced compression members with rectangular cross‐sections. For linear‐elastic material, the principles of an analytical model is presented, which considers geometrical and physical (cracking) non‐linearity. The deflections of the wall can be determined by using moment‐curvature relations, making possible the analytical analysis of compression members considering the effects of 2nd order theory. For a non‐linear stress‐strain relation, the calculation of the load carrying capacity of rectangular compression members under biaxial bending is complex and has to be determined numerically. The good accordance of the results of the analytical model with the numeric calculations is also shown for various eccentricities. In addition, a simplified proposal for the calculation of the load‐bearing capacity of biaxially eccentrically compressed unreinforced compression members is shown. The proposal is based on the load‐bearing capacity of uniaxially eccentrically compressed unreinforced compression members. Therefore it is possible to use the proposal considering existing models, for example according to Eurocode 2 or 6.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号