首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2503篇
  免费   33篇
  国内免费   70篇
电工技术   33篇
综合类   28篇
化学工业   756篇
金属工艺   383篇
机械仪表   185篇
建筑科学   48篇
矿业工程   44篇
能源动力   42篇
轻工业   75篇
水利工程   5篇
石油天然气   12篇
武器工业   6篇
无线电   29篇
一般工业技术   698篇
冶金工业   229篇
原子能技术   11篇
自动化技术   22篇
  2024年   1篇
  2023年   16篇
  2022年   50篇
  2021年   60篇
  2020年   63篇
  2019年   33篇
  2018年   59篇
  2017年   60篇
  2016年   61篇
  2015年   61篇
  2014年   129篇
  2013年   202篇
  2012年   93篇
  2011年   241篇
  2010年   121篇
  2009年   139篇
  2008年   149篇
  2007年   112篇
  2006年   131篇
  2005年   102篇
  2004年   84篇
  2003年   104篇
  2002年   76篇
  2001年   71篇
  2000年   67篇
  1999年   57篇
  1998年   47篇
  1997年   44篇
  1996年   36篇
  1995年   44篇
  1994年   32篇
  1993年   23篇
  1992年   16篇
  1991年   3篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1973年   1篇
排序方式: 共有2606条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(12):16877-16884
Oxygen selective membrane on the base of cermet δ-Bi2O3/Ag with an interpenetrating structure has the maximum potential efficiency of air separation. However, the degradation processes, including the phase degradation of fluorite δ-Bi2O3, do not make it possible to create a membrane with the required perfection and durability. In this work, the ordering of oxygen vacancies with the transformation of fluorite into the rhombohedral phase (S.G. R-3) was studied by powder HT XRD in situ at 600 °C on dense Bi0.78Er0.2Hf0.02O1.51 ceramics. Fast regeneration of disordered fluorite occurs at T = 640–700 °C. The phase degradation of fluorite due to the segregation of dopants at the second stage leads into stable phases - sillenite, tetragonal or rhombohedral phase (S.G. R-3m), depending on the composition of δ-Bi2O3. Fast regeneration of fluorite occurs when heated to 820 °C, which is unacceptable for membranes. Analysis of all available data allows us to propose approaches to optimize the composition of δ-Bi2O3 and technical solutions for creating durable oxygen selective membranes with promising use in distributed multigeneration. As a result of the analysis, a new solid electrolyte with better parameters was obtained.  相似文献   
2.
Microwave irradiation has been proven to be an effective heating source in synthetic chemistry, and can accelerate the reaction rate, provide more uniform heating and help in developing better synthetic routes for the fabrication of bone-grafting implant materials. In this study, a new technique, which comprises microwave heating and powder metallurgy for in situ synthesis of Ti/CaP composites by using Ti powders, calcium carbonate (CaCO3) powders and dicalcium phosphate dihydrate (CaHPO4·2H2O) powders, has been developed. Three different compositions of Ti:CaCO3:CaHPO4·2H2O powdered mixture were employed to investigate the effect of the starting atomic ratio of the CaCO3 to CaHPO4·2H2O on the phase, microstructural formation and compressive properties of the microwave synthesized composites. When the starting atomic ratio reaches 1.67, composites containing mainly alpha-titanium (α-Ti), hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP) and calcium titanate (CaTiO3) with porosity of 26%, pore size up to 152 μm, compressive strength of 212 MPa and compressive modulus of 12 GPa were formed. The in vitro apatite-forming capability of the composite was evaluated by immersing the composite into a simulated body fluid (SBF) for up to 14 days. The results showed that biodissolution occurred, followed by apatite precipitation after immersion in the SBF, suggesting that the composites are suitable for bone implant applications as apatite is an essential intermediate layer for bone cells attachment. The quantity and size of the apatite globules increased over the immersion time. After 14 days of immersion, the composite surface was fully covered by an apatite layer with a Ca/P atomic ratio approximately of 1.68, which is similar to the bone-like apatite appearing in human hard tissue. The results suggested that the microwave assisted-in situ synthesis technique can be used as an alternative to traditional powder metallurgy for the fabrication of Ti/CaP biocomposites.  相似文献   
3.
Watermelon peel residues were used to produce a new biochar by dehydration method. The new biochar has undergone two methods of chemical modification and the effect of this chemical modification on its ability to adsorb Cr(VI) ions from aqueous solution has been investigated. Three biochars, Melon-B, Melon-BO-NH_2 and Melon-BO-TETA, were made from watermelon peel via dehydration with 50% sulfuric acid to give Melon-B followed by oxidation with ozone and amination using ammonium hydroxide to give Melon-BO-NH_2 or Triethylenetetramine(TETA) to give Melon-BO-TETA. The prepared biochars were characterized by BET, BJH,SEM, FT-IR, TGA, DSC and EDAX analyses. The highest removal percentage of Cr(VI) ions was 69% for Melon-B,98% for Melon-BO-NH_2 and 99% for Melon-BO-TETA biochars of 100 mg·L~(-1) Cr(VI) ions initial concentration and 1.0 g·L~(-1) adsorbents dose. The unmodified biochar(Melon-B) and modified biochars(Melon-BO-NH_2 and Melon-BO-TETA) had maximum adsorption capacities(Qm) of 72.46, 123.46, and 333.33 mg·g~(-1), respectively.The amination of biochar reduced the pore size of modified biochar, whereas the surface area was enhanced.The obtained data of isotherm models were tested using different error function equations. The Freundlich,Tempkin and Langmuir isotherm models were best fitted to the experimental data of Melon-B, Melon-BO-NH_2 and Melon-BO-TETA, respectively. The adsorption rate was primarily controlled by pseudo-second–order rate model. Conclusively, the functional groups interactions are important for adsorption mechanisms and expected to control the adsorption process. The adsorption for the Melon-B, Melon-BO-NH_2 and Melon-BO-TETA could be explained for acid–base interaction and hydrogen bonding interaction.  相似文献   
4.
5.
The relatively low capacitance of negative electrodes, as compared to the capacitance of advanced positive electrodes, poses a serious problem, since this limits the development of asymmetric supercapacitor (SC) devices with a large voltage window and enhanced power-energy characteristics. We fabricate negative SC electrodes with a high capacitance that match the capacitance of advanced positive electrodes at similar active mass loadings, as high as 37?mg?cm?2. Cyclic voltammetry, impedance spectroscopy, galvanostatic charge-discharge data and the power-energy characteristics of the asymmetric SC device exhibit good electrochemical performance for a voltage window of 1.6?V. Our approach involves the development and application of particle extraction through liquid-liquid interface (PELLI) methods, new extraction mechanisms and efficient extractors to synthesize α-FeOOH and β-FeOOH electrode materials. The use of PELLI allows agglomerate-free processing of powders, which facilitates their efficient mixing with multiwalled carbon nanotubes (MWCNT) and allows improved electrolyte access to the particle surface. Experiments to determine the properties of FeOOH-MWCNT composites provided insight into the influence of the electrode material and the structure of extractor molecules on the composite properties. The highest capacitance of 5.86?F?cm?2 for negative electrodes and low impedance were achieved using α-FeOOH-MWCNT composites and a 16-phosphonohexadecanoic acid (PHDA) extractor. This extractor allows adsorption on particles, not only at the liquid-liquid interface, but also in the bulk aqueous phase and can potentially be used as a capping agent for particle synthesis and as an extractor in the PELLI method.  相似文献   
6.
李峰 《炭素技术》2003,(3):47-49
粉料的纯度直接影响骨料配方和沥青用量,从而影响糊料混捏质量。文章就影响粉料纯度的因素进行探讨,并提出一些对策,以期对生产有所指导。  相似文献   
7.
介绍了粉末涂料的组成、优越性以及各种性能,分析了粉末涂料在汽车涂装中的经济性,肯定了粉末涂料在汽车工业中的应用前景。  相似文献   
8.
In the present study, various diffusive processes have been investigated during foaming of powdered precursors of polyimide. A detailed analysis of the powdered precursor's characteristics allows for an enhanced morphological understanding of the resulting microstructures and foam unit cell. Parameters that are central to the foaming process such as particle morphology, volatile concentration and sorption-desorption processes are evaluated. Isothermal and non-isothermal desorption experiments have been carried out by thermogravimetric analysis (TGA), and specific diffusive processes have been correlated to thermodynamic and kinetic transitions by means of modulated differential scanning calorimetry (MDSC) of the corresponding materials. It was found that two primary fluxes of volatiles, one out of the external surface of the particles (responsible for volatile desorption) and the other into the growing bubble (responsible for vapor supersaturation inside the bubble) compete against each other creating a competitive scenario that becomes the controlling factor for potential inflation within the precursor particles.  相似文献   
9.
This work demonstrated a novel and potentially important application of two-dimensional small-angle X-ray scattering (2D-SAXS) to investigate powder compaction. SAXS from powder compacts of three materials commonly used for pharmaceutical tabletting exhibited azimuthal variations, with stronger intensity in the direction of the applied compaction force, relative to the transverse direction. This implied that compaction of a (macroscopic) powder could also produce changes on the molecular (nanometre) scale, which can be probed by 2D-SAXS. Two possible explanations for this effect were suggested. A combination of anisometric (i.e. elongated or flattened) granules with anisotropic morphologies could result in azimuthal variation in X-ray scattering due to granule orientation. It is expected that this mechanism would require relatively low packing density, so may operate during die filling. Granule re-orientation appeared less likely at higher packing densities and compaction pressures, however. Under these conditions, the changes in the 2D-SAXS patterns would be consistent with the powder granules becoming relatively flattened in the compression direction, with corresponding changes in their nano-scale morphology. The magnitude of this effect was found to vary between the materials used and increased with compaction pressure. This suggested that 2D-SAXS studies could provide useful information on force-transmission within a compressed powder. Further analysis of the data also suggested differences in the compaction mechanisms (i.e. granule re-orientation, deformation or fragmentation) between the materials studied.  相似文献   
10.
Silver metal has been synthesized in form of a finely divided loose nanopowder, 10–30 nm particle sizes, using a simple polyol process. In hot water, polymer molecules of polyvinyl alcohol (PVA) induce Ag+ → Ag reaction as a weak reducer (suitable to control the final particle size), forming a nanofluid of Ag nanoparticles in situ dispersing in part of PVA molecules. Ag nanoparticles do not aggregate much when casting a viscous Ag–PVA nanofluid (hot) onto a substrate in thin laminates or films. Freestanding Ag–PVA films could be obtained of 1–5 mm thickness after drying at room temperature. Dried sample can be easily peeled from a silicate glass substrate. As small as 5–10 mm Ag–PVA pieces were heated in air in order to recollect Ag nanoparticles by burning off the polymer. At 300–400 °C, Ag–PVA disintegrates and encounters combustion in air, resulting in a pure Ag-powder. As analyzed by X-ray diffraction, a single crystalline phase of an Fm3m cubic crystal structure formed. Lattice parameter a = 0.4071 nm and density ρ = 10.61 g/cm3 compare well the bulk values a = 0.4086 nm and ρ = 10.50 g/cm3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号