首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   558篇
  免费   58篇
  国内免费   34篇
电工技术   6篇
综合类   6篇
化学工业   315篇
金属工艺   13篇
机械仪表   18篇
建筑科学   11篇
矿业工程   2篇
轻工业   137篇
石油天然气   2篇
武器工业   5篇
无线电   28篇
一般工业技术   38篇
冶金工业   3篇
原子能技术   8篇
自动化技术   58篇
  2024年   4篇
  2023年   25篇
  2022年   118篇
  2021年   149篇
  2020年   36篇
  2019年   31篇
  2018年   19篇
  2017年   28篇
  2016年   26篇
  2015年   21篇
  2014年   28篇
  2013年   33篇
  2012年   30篇
  2011年   38篇
  2010年   17篇
  2009年   17篇
  2008年   6篇
  2007年   8篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
排序方式: 共有650条查询结果,搜索用时 31 毫秒
1.
Adult neurogenesis is a highly regulated process during which new neurons are generated from neural stem cells in two discrete regions of the adult brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Defects of adult hippocampal neurogenesis have been linked to cognitive decline and dysfunction during natural aging and in neurodegenerative diseases, as well as psychological stress-induced mood disorders. Understanding the mechanisms and pathways that regulate adult neurogenesis is crucial to improving preventative measures and therapies for these conditions. Accumulating evidence shows that mitochondria directly regulate various steps and phases of adult neurogenesis. This review summarizes recent findings on how mitochondrial metabolism, dynamics, and reactive oxygen species control several aspects of adult neural stem cell function and their differentiation to newborn neurons. It also discusses the importance of autophagy for adult neurogenesis, and how mitochondrial and autophagic dysfunction may contribute to cognitive defects and stress-induced mood disorders by compromising adult neurogenesis. Finally, I suggest possible ways to target mitochondrial function as a strategy for stem cell-based interventions and treatments for cognitive and mood disorders.  相似文献   
2.
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.  相似文献   
3.
Chitosan (CHT) is a non-toxic and inexpensive compound obtained by deacetylation of chitin, the main component of the exoskeleton of arthropods as well as of the cell walls of many fungi. In agriculture CHT is used to control numerous diseases on various horticultural commodities but, although different mechanisms have been proposed, the exact mode of action of CHT is still unknown. In sycamore (Acer pseudoplatanus L.) cultured cells, CHT induces a set of defense/stress responses that includes production of H2O2 and nitric oxide (NO). We investigated the possible signaling role of these reactive molecules in some CHT-induced responses by means of inhibitors of production and/or scavengers. The results show that both reactive nitrogen and oxygen species are not only a mere symptom of stress conditions but are involved in the responses induced by CHT in sycamore cells. In particular, NO appears to be involved in a cell death form induced by CHT that shows apoptotic features like DNA fragmentation, increase in caspase-3-like activity and release of cytochrome c from the mitochondrion. On the contrary, reactive oxygen species (ROS) appear involved in a cell death form induced by CHT that does not show these apoptotic features but presents increase in lipid peroxidation.  相似文献   
4.
Mitochondrial oxidative damage and dysfunction contribute to a wide range of human diseases. Considering the limitation of conventional antioxidants and that mitochondria are the main source of reactive oxygen species (ROS) which induce oxidative damage, mitochondria-targeted antioxidants which can selectively block mitochondrial oxidative damage and prevent various types of cell death have been widely developed. As a lipophilic cation, triphenylphosphonium (TPP) has been commonly used in designing mitochondria-targeted antioxidants. Conjugated with the TPP moiety, antioxidants can achieve more than 1000-fold higher mitochondrial concentration depending on cell membrane potentials and mitochondrial membrane potentials. Herein we discuss the deficiencies of conventional antioxidants and the advantages of mitochondrial targeting, and review various types of TPP-based mitochondria-targeted antioxidants. These provide theoretical and background support for the design of new anti-oxidant.  相似文献   
5.
The voltage-gated proton channel, Hv1, also termed VSOP, was discovered in 2006. It has long been suggested that proton transport through voltage-gated proton channels regulate reactive oxygen species (ROS) production in phagocytes by counteracting the charge imbalance caused by the activation of NADPH oxidase. Discovery of Hv1/VSOP not only confirmed this process in phagocytes, but also led to the elucidation of novel functions in phagocytes. The compensation of charge by Hv1/VSOP sustains ROS production and is also crucial for promoting Ca2+ influx at the plasma membrane. In addition, proton extrusion into neutrophil phagosomes by Hv1/VSOP is necessary to maintain neutral phagosomal pH for the effective killing of bacteria. Contrary to the function of Hv1/VSOP as a positive regulator for ROS generation, it has been revealed that Hv1/VSOP also acts to inhibit ROS production in neutrophils. Hv1/VSOP inhibits hypochlorous acid production by regulating degranulation, leading to reduced inflammation upon fungal infection, and suppresses the activation of extracellular signal-regulated kinase (ERK) signaling by inhibiting ROS production. Thus, Hv1/VSOP is a two-way player regulating ROS production. Here, we review the functions of Hv1/VSOP in neutrophils and discuss future perspectives.  相似文献   
6.
Plumbagin is a plant-derived naphthoquinone that is widely used in traditional Asian medicine due to its anti-inflammatory and anti-microbial properties. Additionally, plumbagin is cytotoxic for cancer cells due to its ability to trigger reactive oxygen species (ROS) formation and subsequent apoptosis. Since it was reported that plumbagin may inhibit the differentiation of bone resorbing osteoclasts in cancer-related models, we wanted to elucidate whether plumbagin interferes with cytokine-induced osteoclastogenesis. Using C57BL/6 mice, we unexpectedly found that plumbagin treatment enhanced osteoclast formation and that this effect was most pronounced when cells were pre-treated for 24 h with plumbagin before subsequent M-CSF/RANKL stimulation. Plumbagin caused a fast induction of NFATc1 signalling and mTOR-dependent activation of p70S6 kinase which resulted in the initiation of protein translation. In line with this finding, we observed an increase in RANK surface expression after Plumbagin stimulation that enhanced the responsiveness for subsequent RANKL treatment. However, in Balb/c mice and Balb/c-derived RAW264.7 macrophages, these findings could not be corroborated and osteoclastogenesis was inhibited. Our results suggest that the effects of plumbagin depend on the model system used and can therefore either trigger or inhibit osteoclast formation.  相似文献   
7.
8.
Catalase (CAT) is an antioxidant enzyme expressed by the CAT gene family and exists in almost all aerobic organisms. Environmental stresses induce the generation of reactive oxygen species (ROS) that eventually hinder plant growth and development. The CAT enzyme translates the hydrogen peroxide (H2O2) to water (H2O) and reduce the ROS levels to shelter the cells’ death. So far, the CAT gene family has not been reported in rapeseed (Brassica napus L.). Therefore, a genome-wide comprehensive analysis was conducted to classify the CAT genes in the rapeseed genome. The current study identified 14 BnCAT genes in the rapeseed genome. Based on phylogenetic and synteny analysis, the BnCATs belong to four groups (Groups I–IV). A gene structure and conserved motif analysis showed that Group I, Group II, and Group IV possess almost the same intron/exon pattern, and an equal number of motifs, while Group III contains diverse structures and contain 15 motifs. By analyzing the cis-elements in the promoters, we identified five hormone-correlated responsive elements and four stress-related responsive elements. Further, six putative bna-miRNAs were also identified, targeting three genes (BnCAT4, BnCAT6, and BnCAT8). Gene ontology (GO) enrichment analysis showed that the BnCAT genes were largely related to cellular organelles, ROS response, stimulus response, stress response, and antioxidant enzymes. Almost 10 BnCAT genes showed higher expression levels in different tissues, i.e., root, leaf, stem, and silique. The expression analysis showed that BnCAT1–BnCAT3 and BnCAT11–BnCAT13 were significantly upregulated by cold, salinity, abscisic acid (ABA), and gibberellic acid (GA) treatment, but not by drought and methyl jasmonate (MeJA). Notably, most of the genes were upregulated by waterlogging stress, except BnCAT6, BnCAT9, and BnCAT10. Our results opened new windows for future investigations and provided insights into the CAT family genes in rapeseed.  相似文献   
9.
胡椒碱(Piperine)是一种从胡椒属植物中提取的生物碱,具有镇静、抗炎、抗肿瘤等多种药理活性.探讨胡椒碱对人胃癌SGC-7901细胞的增殖抑制和诱导凋亡的作用.采用MTT比色法测定其对SGC-7901细胞增殖抑制率;通过免疫荧光法、流式细胞术、Western blot法对其进行抗癌机制研究.MTT结果显示Piperine处理细胞72h的IC50值为37.41 μmol·L-1,且呈现时间剂量依赖性; Hoechst33258染色荧光显微镜观察发现Piperine能诱导SGC-7901细胞核形态学改变,部分细胞呈现典型的凋亡形态学特征;Annexin V-FITC/PI荧光双染结果亦证实Piperine可以诱导SGC-7901细胞发生凋亡;DAPI和DCFH-DA染色流式细胞术分析显示Piperine诱导SGC-7901细胞G2/M期阻滞、细胞活性氧产生增加; Western blot分析发现Bcl-2蛋白表达减少,Bax蛋白表达逐渐增加,呈现剂量依赖性,且Bax/Bcl-2比例增加.因此,Piperine具有抑制SGC-7901细胞增殖和诱导凋亡的抗肿瘤活性.  相似文献   
10.
Photodynamic therapy (PDT) as a non-invasive strategy shows high promise in cancer treatment. However, owing to the hypoxic tumor microenvironment and light irradiation-mediated rapid electron–hole pair recombination, the therapeutic efficacy of PDT is dramatically discounted by limited reactive oxygen species (ROS) generation. Herein, a multifunctional theranostic nanoheterojunction is rationally developed, in which 2D niobium carbide (Nb2C) MXene is in situ grown with barium titanate (BTO) to generate a robust photo-pyroelectric catalyst, termed as BTO@Nb2C nanosheets, for enhanced ROS production, originating from the effective electron–hole pair separation induced by the pyroelectric effect. Under the second near-infrared (NIR-II) laser irradiation, Nb2C MXene core-mediated photonic hyperthermia regulates temperature variation around BTO shells facilitating the electron–hole spatial separation, which reacts with the surrounding O2 and H2O molecules to yield toxic ROS, achieving a synergetic effect by means of combinaterial photothermal therapy with pyrocatalytic therapy. Correspondingly, the engineered BTO@Nb2C composite nanosheets feature benign biocompatibility and high antitumor efficiency with the tumor-inhibition rate of 94.9% in vivo, which can be applied as an imaging-guided real-time non-invasive synergetic dual-mode therapeutic nanomedicine for efficient tumor nanotherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号