首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   1篇
  国内免费   1篇
电工技术   1篇
综合类   4篇
建筑科学   41篇
矿业工程   3篇
能源动力   1篇
石油天然气   1篇
冶金工业   110篇
自动化技术   2篇
  2023年   1篇
  2022年   2篇
  2015年   2篇
  2014年   8篇
  2013年   7篇
  2012年   8篇
  2011年   14篇
  2010年   18篇
  2009年   16篇
  2008年   12篇
  2007年   10篇
  2006年   18篇
  2005年   8篇
  2004年   14篇
  2003年   11篇
  2002年   10篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1984年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
1.
This paper focuses on the mechanisms occurring in a granular earth platform over soft ground improved by rigid piles. Two-dimensional physical model experiments were performed using the Schneebeli’s analogical soil to investigate the load transfer mechanisms by arching and the settlement reduction and homogenization. Experimental outputs are compared to results obtained on a numerical model using a plane strain continuum approach. The impact of the constitutive model complexity to simulate the platform material behavior was first assessed, but no large difference was recorded. As far as the proposed model, which takes the main features of the observed behavior satisfactorily into account, the numerical procedure could be validated and the parametric studies extended numerically. Both approaches of this study underlined the main geometrical and geotechnical parameters which should inevitably be taken into account in a simplified design method, namely the capping ratio, the platform height, and the platform material shear strength.  相似文献   
2.
The excavation of soil for the construction of basements or cut-and-cover tunnels results in ground movements. One particular concern is that the excavation-induced lateral soil movements may adversely affect any nearby pile foundation. The lateral loads imposed by the soil movements induce bending moments and deflections in the pile, which may lead to structural distress and failure. This paper presents the results of an actual full-scale instrumented study that was carried to examine the behavior of an existing pile due to nearby excavation activities resulting from the construction of a 16 m deep cut-and-cover tunnel. The pile was located 3 m behind a 0.8 m thick diaphragm wall. Excavation to the formation level that was 16 m below the ground surface resulted in a maximum lateral pile movement of 28 mm. A simplified numerical procedure based on the finite-element method was used to analyze the pile response. Generally, the theoretical predictions were in reasonable agreement with the measured results.  相似文献   
3.
Thirty six tests on model tubular steel piles embedded in sand were carried out in the laboratory to assess the effects of compressive load on uplift capacity of piles considering various parameters. The model piles were of 25 mm outside diameter and 2 mm wall thickness. The soil–pile friction angles were 21 and 29° in loose and dense conditions of sand. The piles were embedded in sand for embedment length/diameter ratios of 8,16, and 24 inside a model tank. They were subjected to a static compressive load of 0, 25, 50, 75, and 100% of their ultimate capacity in compression and subjected to pull out loading tests. The experimental results indicated that the presence of the compressive load on the pile decreases the net uplift capacity of a pile and the decrease depends on the magnitude of the compressive load. A logical approach, based on the experimental results, has been suggested to predict the net uplift capacity of a pile considering the presence of compressive load.  相似文献   
4.
A large number of pile-supported bridge approach slabs in southeastern Louisiana were examined to identify the factors that affect their long-term performance. Design drawings and subsoil conditions at these sites as well as their traffic and maintenance records were compiled, and seven representative test sites were selected for thorough field investigation that included inspection of the approach slabs, bridge decks, bridge abutments, and roadway pavement. Field evaluation included walking profiler, falling-weight deflectometer (FWD), laser profiler, geodetic survey, soil borings, cone penetrometer, and nondestructive testing. Measurements made with the walking profiler agreed well with the geodetic survey. The FWD and nondestructive testing were effectively used to detect voids under the approach slab. Results of the study indicated that the current empirical methodology used by the Louisiana Department of Transportation and Development for design of pile-supported approach slabs yields inconsistent field performance. It was concluded that this inconsistent performance is primarily due to the differences in roadway embankment design and construction and in subsoil conditions, which in turn affect the negative skin friction (downdrag) loads imparted on the piles. Impact of other variables such as ramp type, speed limit, traffic volume, and so on was found to be insignificant. Results of the field study were used to develop a new rating system for approach slabs (IRIS) based on International Roughness Index (IRI) measurements obtained with the laser profiler.  相似文献   
5.
Development of Downdrag on Piles and Pile Groups in Consolidating Soil   总被引:1,自引:0,他引:1  
Development of pile settlement (downdrag) of piles constructed in consolidating soil may lead to serious pile foundation design problems. The investigation of downdrag has attracted far less attention than the study of dragload over the years. In this paper, several series of two-dimensional axisymmetric and three-dimensional numerical parametric analyses were conducted to study the behavior of single piles and piles in 3×3 and 5×5 pile groups in consolidating soil. Both elastic no-slip and elasto-plastic slip at the pile–soil interface were considered. For a single pile, the downdrag computed from the no-slip elastic analysis and from the analytical elastic solution was about 8–14 times larger than that computed from the elasto-plastic slip analysis. The softer the consolidating clay, the greater the difference between the no-slip elastic and the elasto-plastic slip analyses. For the 5×5 pile group at 2.5 diameter spacing, the maximum downdrag of the center, inner, and corner piles was, respectively, 63, 68, and 79% of the maximum downdrag of the single pile. The reduction of downdrag inside the pile group is attributed to the shielding effects on the inner piles by the outer piles. The relative reduction in downdrag (Wr) in the 5×5 pile group increases with an increase in the relative bearing stiffness ratio (Eb/Ec), depending on the pile location in the group. Compared with the relative reduction in dragload (Pr), Wr at the corner pile is less affected by the group interaction for a given surcharge load. This suggests that the use of sacrificing piles outside the pile group will be more effective on Pr than on Wr. Based on the three cases studied, the larger the number of piles in a group, the greater the shielding effects on Wr. Relatively speaking, Wr is more sensitive to the total number of piles than to the pile spacing within a pile group.  相似文献   
6.
预应力混凝土管桩在沉桩过程中,将发生挤土效应和土塞效应,二者是有机统一的。基于SMP强度准则,考虑土塞效应,分析了预应力混凝土管桩的挤土效应及土塞效应,并推导了预应力混凝土管桩的应力场及位移场的计算公式。通过实例表明,基于考虑中间主应力的SMP强度准则推导得到的预应力混凝土管桩的应力状态及位移场的计算公式,在实际工程中具有一定的现实指导意义。  相似文献   
7.
采用石质为石灰石与石质为硅质岩的两种不同粗集料拌制混凝土,经过常压养护、压蒸养护等不同的混凝土蒸汽养护工艺,测定混凝土脱模抗压强度及压蒸后抗压强度。结果表明:石质为石灰石与石质为花岗岩的两种不同粗集料在常压养护结束后,混凝土抗压强度均有较大的增长,混凝土强度增长规律基本一致;但经压蒸养护后石质为石灰石与石质为花岗岩的两种不同粗集料配制的混凝土抗压强度产生很大的差异,石质为石灰石的粗集料配制的混凝土强度增长较低,而石质为硅质岩的粗集料配制的混凝土强度有很大的提高。  相似文献   
8.
Construction time matters for activities where rental equipment must be used. The building of a secant pile wall requires the rental of equipment and finding the optimal sequence to minimize the construction time is one way to lower construction costs. In this study we develop an effective and efficient optimization algorithm, which we call self-organizing feature map (SOM)-based optimization (SOMO), to minimize the construction time. The algorithm is applied to a case study to obtain the optimal sequences for both primary and secondary bored piles for a secant pile wall. The new SOMO algorithm is developed based on the ability of the human brain to produce topologically ordered mapping, so as to exploit better solutions via updating the weighting vectors of the neurons in a self-organizing topological way that occurs in the evolution of the feature map for optimization. Given detailed building time of the 16 activities of each bored pile, we find that 143.92 h or 27.21% of the original construction can be saved. The optimal sequences for both primary and secondary bored piles are also determined. The practicability of the SOMO algorithm is substantiated.  相似文献   
9.
The principal focus of this study is the development of a robust macroelement model for soil–pile interaction under cyclic loads. The model incorporates frictional forces and formation of gaps at the soil–pile interface as well as hysteretic behavior of the soil. The plastic envelope of the soil behavior is modeled via the so-called p–y approach, outlined in American Petroleum Institute’s guidelines for design of foundation piles for offshore platforms. The macroelement is an intuitive assembly of various basic elements, each of which incorporating a particular aspect of the soil–pile interaction. The modular structure of this macroelement allows straightforward adaptation of improved constitutive models for its building blocks. Herein, we focus on large-diameter, cast-in-drilled-hole reinforced concrete piles (piers) that are partially or fully embedded in soil. These types of piles are frequently used as support structures in highway construction. Consequently, the numerical robustness of the interaction model is assessed with parametric studies on pile systems and soil types relevant to this type of construction. Both elastic and inelastic pile behaviors are considered in the parametric studies. The results indicate that the proposed interaction element is numerically robust, and thus, amenable to routine structural analysis.  相似文献   
10.
Cyclic Lateral Load Behavior of a Pile Cap and Backfill   总被引:1,自引:0,他引:1  
A series of static cyclic lateral load tests were performed on a full-scale 4×3 pile group driven into a cohesive soil profile. Twelve 324-mm steel pipe piles were attached to a concrete pile cap 5.18×3.05?m in plan and 1.12?m in height. Pile–soil–pile interaction and passive earth pressure provided lateral resistance. Seven lateral load tests were conducted in total; four tests with backfill compacted in front of the pile cap; two tests without backfill; and one test with a narrow trench between the pile cap and backfill soil. The formation of gaps around the piles at larger deflections reduced the pile–soil–pile interaction resulting in a degraded linear load versus deflection response that was very similar for the two tests without backfill and the trenched test. A typical nonlinear backbone curve was observed for the backfill tests. However, for deflections greater than 5 mm, the load-deflection behavior significantly changed from a concave down shape for the first cycle to a concave up shape for the second and subsequent cycles. The concave up shape continued to degrade with additional cycles past the second and typically became relatively constant after five to seven cycles. A gap formed between the backfill soil and the pile cap, which contributed to the load-deflection degradation. Crack patterns and sliding surfaces were consistent with that predicted by the log spiral theory. The results from this study indicate that passive resistance contributes considerably to the lateral resistance. However, with cyclic loading the passive force degrades significantly for deflections greater than 0.5% of the pile cap height.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号