首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
建筑科学   1篇
  2012年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
The aim of this work was to explore the application of sulfate radical based advanced oxidation processes: photooxidation (UV/PMS/PS), sonooxidation (US/PMS/PS) and combined sono-photooxidation (US/UV/PMS/PS) for the mineralization of simulated dyehouse effluent (WW); using peroxymonosulfate (PMS) and persulfate (PS) as oxidants. Experiments were performed in a reaction vessel of a defined geometry and axially positioned source of UV-C radiation, all placed in the ultrasonic bath (35 kHz). Mathematical model of the process was developed according to the proposed degradation scheme. Decomposition of dyestuff (C.I. Reactive Violet 2, RV2 and C.I. Reactive Blue 7, RB7), surfactant (linear alkylbenzene sulfonate; hereafter: LAS) and auxiliary organic components was explored in three types of model wastewater: WW, simulated effluent excluding inorganic species (WW-IS) and model solution that consists of a specific compound (hereafter: compound model solutions). The influence of inorganic matrix (Cl, CO32−/HCO3) was studied due to the corresponding quenching affinity toward HO and SO4 radicals. The efficiency of applied processes was evaluated and the response to combined phenomena (cavitation and irradiation) was quantified as synergy index, fSyn. Sono-photooxidative treatment (US/UV/PMS/PS) of WW resulted in a partial mineralization and partial decolourization; approximately 40% of initial TOC and 30% of initial RB7 remained after 60 min of treatment, while RV2 and LAS molecule were completely decomposed. Circumstantially, the combined process increased the mineralization efficiency by a factor of 3 (fSyn = 3.026).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号