首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22143篇
  免费   1844篇
  国内免费   461篇
电工技术   203篇
技术理论   1篇
综合类   1319篇
化学工业   1717篇
金属工艺   2305篇
机械仪表   771篇
建筑科学   6324篇
矿业工程   2161篇
能源动力   403篇
轻工业   195篇
水利工程   306篇
石油天然气   293篇
武器工业   39篇
无线电   1018篇
一般工业技术   3291篇
冶金工业   2667篇
原子能技术   58篇
自动化技术   1377篇
  2024年   50篇
  2023年   431篇
  2022年   362篇
  2021年   541篇
  2020年   607篇
  2019年   455篇
  2018年   479篇
  2017年   453篇
  2016年   676篇
  2015年   754篇
  2014年   1235篇
  2013年   1260篇
  2012年   1519篇
  2011年   1880篇
  2010年   1296篇
  2009年   1304篇
  2008年   1232篇
  2007年   1357篇
  2006年   1255篇
  2005年   1079篇
  2004年   932篇
  2003年   832篇
  2002年   712篇
  2001年   531篇
  2000年   459篇
  1999年   458篇
  1998年   383篇
  1997年   340篇
  1996年   291篇
  1995年   297篇
  1994年   241篇
  1993年   141篇
  1992年   105篇
  1991年   73篇
  1990年   70篇
  1989年   47篇
  1988年   51篇
  1987年   36篇
  1986年   23篇
  1985年   34篇
  1984年   29篇
  1983年   30篇
  1982年   21篇
  1981年   13篇
  1980年   10篇
  1979年   14篇
  1978年   11篇
  1977年   7篇
  1975年   6篇
  1974年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Metals that are exposed to high pressure hydrogen gas may undergo detrimental failure by embrittlement. Understanding the mechanisms and driving forces of hydrogen absorption on the surface of metals is crucial for avoiding hydrogen embrittlement. In this study, the effect of stress-enhanced gaseous hydrogen uptake in bulk metals is investigated in detail. For that purpose, a generalized form of Sievert's law is derived from thermodynamic potentials considering the effect of microstructural trapping sites and multiaxial stresses. This new equation is parametrized and verified using experimental data for carbon steels, which were charged under gaseous hydrogen atmosphere at pressures up to 1000 bar. The role of microstructural trapping sites on the parameter identification is critically discussed. Finally, the parametrized equation is applied to calculate the stress-enhanced hydrogen solubility of thin-walled pipelines and thick-walled pressure vessels during service.  相似文献   
2.
Hydrogen technology is widely considered a novel clean energy source, and electrolysis is an effective method for hydrogen evolution. Therefore, efficient hydrogen evolution reaction (HER) catalysts are urgently needed to replace precious metal catalysts and meet ecological and environmental protection standards. Herein, Ni–Mn–P electrocatalysts are synthesized using facile electrodeposition technology. The influence of the Mn addition on the catalytic behavior is studied by the comprehensive analysis of catalytic performance and morphology of the catalysts. Among them, the Ni–Mn–P0.01 catalyst exhibits small coral-like structures, greatly improving the adsorption and desorption of hydrogen ions and reducing the overpotential hydrogen evolution. Consequently, overpotential at 10 mA cm?2 electric current density is 113 mV, and the value of the Tafel slope achieves 74 mV/dec. Furthermore, the Ni–Mn–P catalyst shows long-time (20 h) stability at current densities of 10 and 60 mA/cm2. The results confirm that the synergistic effect of Ni, Mn, and P accelerates the electrochemical reaction. Meanwhile, the addition of manganese element can change the micromorphology of the catalyst, thereby exposing more active sites to participate in the reaction, enhancing water ionization, improving the catalytic performance. This study opens a new way toward improving the activity of the catalyst by adjusting Mn concentration during the electrodeposition process.  相似文献   
3.
Noncentrosymmetric (NCS) tetrel pnictides have recently generated interest as nonlinear optical (NLO) materials due to their second harmonic generation (SHG) activity and large laser damage threshold (LDT). Herein nonmetal-rich silicon phosphides RuSi4P4 and IrSi3P3 are synthesized and characterized. Their crystal structures are reinvestigated using single crystal X-ray diffraction and 29Si and 31P magic angle spinning NMR. In agreement with previous report RuSi4P4 crystallizes in NCS space group P1, while IrSi3P3 is found to crystallize in NCS space group Cm, in contrast with the previously reported space group C2. A combination of DFT calculations and diffuse reflectance measurements reveals RuSi4P4 and IrSi3P3 to be wide bandgap (Eg) semiconductors, Eg = 1.9 and 1.8 eV, respectively. RuSi4P4 and IrSi3P3 outperform the current state-of-the-art infrared SHG material, AgGaS2, both in SHG activity and laser inducer damage threshold. Due to the combination of high thermal stabilities (up to 1373 K), wide bandgaps (≈2 eV), NCS crystal structures, strong SHG responses, and large LDT values, RuSi4P4 and IrSi3P3 are promising candidates for longer wavelength NLO materials.  相似文献   
4.
The constructive analysis of Madrid's old timber-framed collective courtyard buildings, whether demolished, preserved intact, or enlarged, has achieved the dating of relevant case studies. New parameters established in this study set a chronology based on front sector original projects: old (1737–1788), pre-modern (1788–1847) and modern (1847–1892). The on-site inspection and archival research point to ongoing misleading construction in the historic Southern area. Some modern corralas erected on top of pre-existing buildings confirm the initial hypothesis. First dimensioning rules for new façades and the stability required in old ones before adding new storeys, maintaining the original masonry or double-layered system, are discovered. Undated buildings suggest their possible origin a la malicia and a later transformation into transitional corralas. Finally, an analysis of the demolished courtyards narrows down the dating and points to new conjectures in some preserved by showing their uneven layout, old features, and structural discordances in each sector.  相似文献   
5.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
6.
Hot-dip galvanizing is a standard technology to produce coated steel strips. The primary objective of the galvanizing process is to establish a homogeneous zinc layer with a defined thickness. One condition to achieve this objective is a uniform transverse distance between the strip and the gas wiping dies, which blow off excessive liquid zinc. Therefore, a flat strip profile at the gas wiping dies is required. However, strips processed in such plants often exhibit residual curvatures which entail unknown flatness defects of the strip. Such flatness defects cause non-uniform air gaps and hence an inhomogeneous zinc coating thickness. Modern hot-dip galvanizing lines often use electromagnets to control the transverse strip profile near the gas wiping dies. Typically, the control algorithms ensure a flat strip profile at the electromagnets because the sensors for the transverse strip displacement are also located at this position and it is unfeasible to mount displacement sensors directly at the gas wiping dies. This brings along that in general a flatness defect remains at the gas wiping dies, which in turn entails a suboptimal coating.In this paper, a model-based method for a feedforward control of the strip profile at the position of the gas wiping dies is developed. This method is based on a plate model of the axially moving strip that takes into account the flatness defects in the strip. First, an estimator of the flatness defects is developed and validated for various test strips and settings of the plant. Using the validated mathematical model, a simulation study is performed to compare the state-of-the-art control approach (flat strip profile at the electromagnets) with the optimization-based feedforward controller (flat strip profile at the gas wiping dies) proposed in this paper. Moreover, the influence of the distance between the gas wiping dies and the electromagnets is investigated in detail.  相似文献   
7.
Discrete Element Method (DEM) has been used for numerical investigation of sintering-induced structural deformations occurring in inverse opal photonic structures. The influence of the initial arrangement of template particles on the stability of highly porous inverse opal α-Al2O3 structures has been analyzed. The material transport, densification, as well as formation of defects and cracks have been compared for various case studies. Three different stages of defects formation have been distinguished starting with local defects ending with intrapore cracks. The results show that the packing of the template particles defined during the template self-assembly process play a crucial role in the later structural deformation upon thermal exposure. The simulation results are in very good agreement with experimental data obtained from SEM images and previous studies by ptychographic X-ray tomography.  相似文献   
8.
We explore a truncation error criterion to steer adaptive step length refinement and coarsening in incremental-iterative path following procedures, applied to problems in large-deformation structural mechanics. Elaborating on ideas proposed by Bergan and collaborators in the 1970s, we first describe an easily computable scalar stiffness parameter whose sign and rate of change provide reliable information on the local behavior and complexity of the equilibrium path. We then derive a simple scaling law that adaptively adjusts the length of the next step based on the rate of change of the stiffness parameter at previous points on the path. We show that this scaling is equivalent to keeping a local truncation error constant in each step. We demonstrate with numerical examples that our adaptive method follows a path with a significantly reduced number of points compared to an analysis with uniform step length of the same fidelity level. A comparison with Abaqus illustrates that the truncation error criterion effectively concentrates points around the smallest-scale features of the path, which is generally not possible with automatic incrementation solely based on local convergence properties.  相似文献   
9.
In this study, two dimensional (2D) and quasi three-dimensional (quasi-3D) shear deformation theories are presented for static and free vibration analysis of single-layer functionally graded (FG) plates using a new hyperbolic shape function. The material of the plate is inhomogeneous and the material properties assumed to vary continuously in the thickness direction by three different distributions; power-law, exponential and Mori–Tanaka model, in terms of the volume fractions of the constituents. The fundamental governing equations which take into account the effects of both transverse shear and normal stresses are derived through the Hamilton's principle. The closed form solutions are obtained by using Navier technique and then fundamental frequencies are found by solving the results of eigenvalue problems. In-plane stress components have been obtained by the constitutive equations of composite plates. The transverse stress components have been obtained by integrating the three-dimensional stress equilibrium equations in the thickness direction of the plate. The accuracy of the present method is demonstrated by comparisons with the different 2D, 3D and quasi-3D solutions available in the literature.  相似文献   
10.
Rolling contact fatigue in bearing steels is manifested by dark-etching regions, which are attributed to deformation induced tempering. In order to quantitatively explain this phenomenon, a model is suggested for martensite tempering assisted by dislocation glide during rolling contact fatigue. In the model, dislocations transport carbon from the matrix to carbide particles, provided that the carbon is located at a certain distance range from the dislocation contributing to the tempering process. By calculating the amount of carbon in the matrix, the kinetics of carbide thickening and hardness reduction are computed. It is found that the dark-etching region kinetics can be controlled by both bearing operation conditions (temperature and deformation rate) and microstructure (type, size, and volume fraction of carbides). The model is validated against tested bearings, and its limitations are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号