首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25045篇
  免费   2083篇
  国内免费   1127篇
电工技术   1368篇
技术理论   3篇
综合类   2872篇
化学工业   1509篇
金属工艺   595篇
机械仪表   966篇
建筑科学   6581篇
矿业工程   1254篇
能源动力   1824篇
轻工业   743篇
水利工程   1649篇
石油天然气   811篇
武器工业   249篇
无线电   1390篇
一般工业技术   1371篇
冶金工业   1082篇
原子能技术   174篇
自动化技术   3814篇
  2024年   88篇
  2023年   325篇
  2022年   618篇
  2021年   682篇
  2020年   705篇
  2019年   554篇
  2018年   469篇
  2017年   675篇
  2016年   826篇
  2015年   894篇
  2014年   1518篇
  2013年   1295篇
  2012年   1487篇
  2011年   2013篇
  2010年   1633篇
  2009年   1682篇
  2008年   1584篇
  2007年   1883篇
  2006年   1662篇
  2005年   1394篇
  2004年   1210篇
  2003年   1072篇
  2002年   898篇
  2001年   665篇
  2000年   561篇
  1999年   440篇
  1998年   311篇
  1997年   223篇
  1996年   197篇
  1995年   132篇
  1994年   114篇
  1993年   92篇
  1992年   73篇
  1991年   46篇
  1990年   43篇
  1989年   35篇
  1988年   37篇
  1987年   15篇
  1986年   14篇
  1985年   12篇
  1984年   11篇
  1983年   11篇
  1982年   5篇
  1981年   7篇
  1980年   5篇
  1979年   9篇
  1978年   4篇
  1977年   4篇
  1966年   3篇
  1959年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(12):16808-16812
Flash sintering has been reported in various ceramics. Nevertheless, anion and cation conductors exhibit different flash-sintering behaviors, and the interaction mechanism between the conductive species and the sintering environment has remained unclear. Herein, we report the flash-sintering phenomena of a typical cation conductor, Na3Zr2(SiO4)2(PO4) with anode region surrounded by air and NaNO3 environments. The results prove that the ionic behavior and joule heating distribution can be controlled by changing the electrode environment. Four possible scenarios describing the ion migration behavior and interaction with the environment are proposed for providing a guidance for controlling the ion interaction behavior during flash sintering.  相似文献   
2.
The motion trajectory of hydrogen leakage is an essential safe issue for the application of hydrogen energy. A dimensionless fast-running motion trajectory prediction model is proposed to predict the dispersion characteristics of the buoyant jet of hydrogen leakage for the accident. The impact of different leakage angles, leakage velocity and thermal stratification of ambient air on hydrogen leakage behavior was analyzed. The new developed model was verified by experimental results in literatures. Leakage hydrogen can flow upwards freely in a uniform environment. However, it shows an oscillating trajectory at a certain height in a thermally stratified environment, which is so called “locking phenomenon”. The trajectory of hydrogen leakage is upward and hydrogen gathers at the top of the space to form stratification in a uniform environment, while the hydrogen leakage shows an oscillating trajectory at a certain height in a thermal stratification environment. With the increase of Froude number Fr, it shows that the stable height and maximum height of the leakage airflow have a trend of rising first and then falling in a thermally stratified environment. The findings are expected to give guidance in real-world situations, for example, a larger Fr value and a larger temperature gradient can lead to a decrease in the stable height in the thermally stratified environment. It is found that the fitting of the stable height with different temperature gradients satisfies the power function relationship. This work is expected to be helpful for reducing hydrogen leakage accumulation and explosion risk.  相似文献   
3.
Ambient condition, especially the wind condition, is an important factor to determine the behavior of hydrogen diffusion during hydrogen release. However, only few studies aim at the quantitative study of the hydrogen diffusion in a wind-exist condition. And very little researches aiming at the variable wind condition have been done. In this paper, the hydrogen diffusion in different wind condition which including the constant wind velocity and the variable wind velocity is investigated numerically. When considering the variable wind velocity, the UDF (user defined function) is compiled. Characteristics of the FGC (flammable gas cloud) and the HMF (hydrogen mass fraction) are analyzed in different wind condition and comparisons are made with the no-wind condition. Results indicate that the constant wind velocity and the variable wind velocity have totally different effect for the determination of hydrogen diffusion. Comparisons between the constant wind velocity and the variable wind velocity indicate that the variable wind velocity may cause a more dangerous situation since there has a larger FGC volume. More importantly, the wind condition has a non-negligible effect when considering the HMF along the radial direction. As the wind velocity increases, the distribution of the HMF along the radial direction is not Gaussian anymore when the distance between the release hole and the observation line exceeds to a critical value. This work can be a supplement of the research on the hydrogen release and diffusion and a valuable reference for the researchers.  相似文献   
4.
Hydrogen as an energy carrier can play a significant role in reducing environmental emissions if it is produced from renewable energy resources. This research aims to assess hydrogen production from wind energy considering environmental, economic, and technical aspect for the East Azerbaijan province of Iran. The economic assessment is performed by calculation of payback period, levelized cost of hydrogen, and levelized cost of electricity. Since uncertainty in the power output of wind turbines may affect the payback period, all calculations are performed for four different turbine degradation rates. While it is common in the literature to choose the wind turbine based on a single criterion, this study implements Multi-Criteria Decision-Making (MCDM) techniques for this purpose. The results of Step-wise Weight Assessment Ratio Analysis illustrates that economic issue is the most important criterion for this research. The results of Weighted Aggregated Sum Product Assessment shows that Vestas V52 is the most suitable wind turbine for Ahar and Sarab cities, while Eovent EVA120 H-Darrieus is a better choice for other stations. The most suitable location for wind power generation is found to be Ahar, where it is estimated to annually generate 2914.8 kWh of electricity at the price of 0.045 $/kWh, and 47.2 tons of hydrogen at the price of 1.38 $/kg, which result in 583 tons of CO2 emission reduction.  相似文献   
5.
价值观的传播是一个缓慢的过程,在当前工业文明向生态文明过渡的时期,如何有效地提升民众的生态意识是值得探讨的问题。以生态审美意识传播为切入点,通过了解国内外主流的室内环境生态评估指标体系的前后变化,总结当前室内环境生态评估的变化趋势及其主要特征;从指标体系的变化中分析生态审美价值观的渗透方式,探讨当代室内环境生态评估对生态审美价值观传播的促进作用。最后,通过实验设定针对室内传统营造技艺应用的评估工具,并且在评估工具的使用过程中展示传播的模式与效用,通过评估反馈再一次验证室内环境生态评估对生态审美价值观的正向传播作用。  相似文献   
6.
Yaw control systems orientate the rotor of a wind turbine into the wind direction, optimize the wind power generated by wind turbines and alleviate the mechanical stresses on a wind turbine. Regarding the advantages of yaw control systems, a k-nearest neighbor classifier (k-NN) has been developed in order to forecast the yaw position parameter at 10-min intervals in this study. Air temperature, atmosphere pressure, wind direction, wind speed, rotor speed and wind power parameters are used in 2, 3, 4, 5 and 6-dimensional input spaces. The forecasting model using Manhattan distance metric for k = 3 uncovered the most accurate performance for atmosphere pressure, wind direction, wind speed and rotor speed inputs. However, the forecasting model using Euclidean distance metric for k = 1 brought out the most inconsistent results for atmosphere pressure and wind speed inputs. As a result of multi-tupled analyses, many feasible inferences were achieved for yaw position control systems. In addition, the yaw position forecasting model developed was compared with the persistence model and it surpassed the persistence model significantly in terms of the improvement percent.  相似文献   
7.
Fault detection, isolation and optimal control have long been applied to industry. These techniques have proven various successful theoretical results and industrial applications. Fault diagnosis is considered as the merge of fault detection (that indicates if there is a fault) and fault isolation (that determines where the fault is), and it has important effects on the operation of complex dynamical systems specific to modern industry applications such as industrial electronics, business management systems, energy, and public sectors. Since the resources are always limited in real-world industrial applications, the solutions to optimally use them under various constraints are of high actuality. In this context, the optimal tuning of linear and nonlinear controllers is a systematic way to meet the performance specifications expressed as optimization problems that target the minimization of integral- or sum-type objective functions, where the tuning parameters of the controllers are the vector variables of the objective functions. The nature-inspired optimization algorithms give efficient solutions to such optimization problems. This paper presents an overview on recent developments in machine learning, data mining and evolving soft computing techniques for fault diagnosis and on nature-inspired optimal control. The generic theory is discussed along with illustrative industrial process applications that include a real liquid level control application, wind turbines and a nonlinear servo system. New research challenges with strong industrial impact are highlighted.  相似文献   
8.
9.
The extensive research interests in environmental temperature can be linked to human productivity / performance as well as comfort and health; while the mechanisms of physiological indices responding to temperature variations remain incompletely understood. This study adopted a physiological sensory nerve conduction velocity (SCV) as a temperature‐sensitive biomarker to explore the thermoregulatory mechanisms of human responding to annual temperatures. The measurements of subjects’ SCV (over 600 samples) were conducted in a naturally ventilated environment over all four seasons. The results showed a positive correlation between SCV and annual temperatures and a Boltzmann model was adopted to depict the S‐shaped trend of SCV with operative temperatures from 5°C to 40°C. The SCV increased linearly with operative temperatures from 14.28°C to 20.5°C and responded sensitively for 10.19°C‐24.59°C, while tended to be stable beyond that. The subjects’ thermal sensations were linearly related to SCV, elaborating the relation between human physiological regulations and subjective thermal perception variations. The findings reveal the body SCV regulatory characteristics in different operative temperature intervals, thereby giving a deeper insight into human autonomic thermoregulation and benefiting for built environment designs, meantime minimizing the temperature‐invoked risks to human health and well‐being.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号