首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51295篇
  免费   3598篇
  国内免费   1479篇
电工技术   673篇
综合类   6670篇
化学工业   6624篇
金属工艺   1748篇
机械仪表   899篇
建筑科学   25861篇
矿业工程   985篇
能源动力   645篇
轻工业   275篇
水利工程   4753篇
石油天然气   203篇
武器工业   289篇
无线电   935篇
一般工业技术   4255篇
冶金工业   1051篇
原子能技术   129篇
自动化技术   377篇
  2024年   100篇
  2023年   511篇
  2022年   1050篇
  2021年   1201篇
  2020年   1205篇
  2019年   897篇
  2018年   974篇
  2017年   1213篇
  2016年   1258篇
  2015年   1569篇
  2014年   3128篇
  2013年   2101篇
  2012年   3402篇
  2011年   3737篇
  2010年   2913篇
  2009年   3610篇
  2008年   3414篇
  2007年   4275篇
  2006年   3524篇
  2005年   3056篇
  2004年   2437篇
  2003年   2130篇
  2002年   1838篇
  2001年   1506篇
  2000年   1239篇
  1999年   955篇
  1998年   702篇
  1997年   554篇
  1996年   468篇
  1995年   348篇
  1994年   307篇
  1993年   206篇
  1992年   162篇
  1991年   100篇
  1990年   66篇
  1989年   58篇
  1988年   38篇
  1987年   33篇
  1986年   10篇
  1985年   5篇
  1984年   10篇
  1983年   11篇
  1982年   15篇
  1980年   25篇
  1979年   2篇
  1975年   2篇
  1962年   1篇
  1959年   1篇
  1957年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Ceramic microparticles have great potentials in various fields such as materials engineering, biotechnology, microelectromechanical systems, etc. Morphology of the microparticle performs an important role on their application. To date, it remains difficult to find an effective and controllable way for fabricating nonspherical ceramic microparticles with 3D features. This work demonstrates a method that combines UV light lithography and single emulsion opaque-droplet-templated microfluidic molding to prepare the crescent-shaped ceramic microparticles. By tailoring the intensity of UV light and flow rate of fluid, the shapes of microparticles are accordingly tuned. Therefore, varieties of crescent-shaped microparticles and their variations have been fabricated. After sintering, the crescent-shaped alumina ceramic microparticles were obtained. Benefitting from the light absorption and scattering behavior of most ceramic nanoparticles, this system can serve as a general platform to produce crescent-shaped microparticles made from different materials, and hold great potentials for applications in microrobotics, structural materials in MEMS, and biotechnology.  相似文献   
2.
B4C-TiB2 ceramics (TiB2 ranging 5~70 vol%) with Mo-Co-WC as the sintering additive were prepared by spark plasma sintering. In comparison with B4C-TiB2 without additive, the enhanced densification was evident in the sintered specimen with Mo-Co-WC additive. Core-rim structured grain was observed around TiB2 grains. The interface of the rim between TiB2 and B4C phases demonstrated different feature: the inner borderline of the rim exhibited a smooth feature, whereas a sharp curved grain boundary was observed between the rim and the B4C grain. The formation mechanism is discussed: the epitaxial growth of (Ti,Mo,W)B2 rim around the TiB2 core may occur as a result of the solid solution and dissolution-precipitation between TiB2 phase and the sintering additive. It was revealed that the fracture toughness increased as the content of TiB2 content increased, alongside the decreased hardness. B4C-30 vol% TiB2 specimen demonstrated the optimal combination of mechanical properties, reaching Vickers hardness of 24.3 GPa and fracture toughness of 3.33 MPa·m1/2.  相似文献   
3.
A new aqueous slurry-based laminated object manufacturing process for porous ceramics is proposed: firstly, an organic mesh sheet is pre-paved as a pore-forming template before slurry layer scraping; secondly, the 2D pattern is built with laser outline cutting of the dried mesh–ceramic composite layer; finally, the pore structure is formed after degreasing and sintering. Alumina parts with porosities of 51.5 %, round hole diameters of 80 ± 5 μm were fabricated using 70 wt. % solid content slurry and 100 mesh nylon net. Using an organic mesh as the framework and template not only reduces the risk of damage of the green body but also ensures the regularity, uniformity and connectivity of the micron scaled pore network. The layer-by-layer drying method avoids the delamination phenomenon and improves the paving density. The new method can realize the flexible design of the pore structure by using various organic mesh templates.  相似文献   
4.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
5.
The confinement of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) in a stabilized inorganic glass matrix is a new strategy for improving their long-term stability and promoting their applications in the optoelectronic field. Here, in situ nanocrystallization strategy is developed to precipitate CsPbBr3?xIx NCs with arbitrary I/Br ratio among an elaborately designed GeS2–Sb2S3-based chalcogenide glass matrix. Spherical CsPbBr3?xIx NCs are homogeneously distributed in the glass matrix after thermal treatment. The photoluminescence (PL) spectra show that the emission peaks of CsPbBr3?xIx NCs can be tuned from 570 nm to 722 nm with the replacement of Br by I. The fs transient absorption (TA) spectra reveal that there exists some structural defects in the NCs, leading to short PL decay life. This work would shed light on confining CsPbX3 NCs into glassy matrices, facilitating their future applications in photoelectronic fields.  相似文献   
6.
《Ceramics International》2022,48(6):7593-7604
The ceramic core, produced by hot injection molding, is one of the critical components for manufacturing high-performance aircraft engine turbine blades. However, the injection molding process will cause defects such as burrs and flashes in the fine structure of the formed ceramic core. Manual trimming is necessary, but the trimming quality is poor, and the yield is low. In this paper, the online trimming method of ceramic cores is studied. Based on the orthogonal experiment method, the optimal laser parameters for processing the ceramic core's porous multi-scale particle structure material were obtained. Further, the problems of the match head and tail phenomenon and dimensional accuracy improvement in trimming ceramic cores have been studied. A path optimisation method is proposed to improve the quality and accuracy of the trimming profile effectively. Finally, the overall process flow of ceramic core trimming is elaborated, and experimental verification is given. The results show that the ceramic core online trimming method proposed in this paper has advantages of high precision and high yield compared with the manual method, which will have substantial potential application value in the aviation field.  相似文献   
7.
In this work, 0.5TRPO•0.5Gd2Zr2O7 ceramic with an average grain size of only ∼15 nm was prepared by a high pressure (5 GPa/520 °C) sintering method. Phase evolutions and microstructure changes of the as-fabricated super nano and micron-grained ceramics under a high-dose displacement damage induced by 300 keV Kr2+ ions were investigated. The results show that the super nano-grained ceramic has low degree of amorphization, obvious grain growth (2–3 times in grain size) and big Kr bubbles (10–68 nm) formation after irradiation. The micron-grained ceramic was severely amorphized after irradiation and many microcracks were formed parallel to its surface. The formation mechanism of Kr bubbles in the super nano-grained ceramic is on account of grain boundary diffusion and migration induced by the accumulation of the injecting Kr ions and irradiation defects. Nevertheless, microcracks formed in the micron-grained sample are caused by the accumulation of Kr atoms.  相似文献   
8.
This paper presents the fresh, mechanical, and durability performance, of a structural concrete mix classified as C-1, by the Canadian Standards Association (CSA) made with controlled quality Recycled Concrete Aggregate (RCA). Five mixes with water-to-cementing material (w/cm) ratio of 0.40 were produced with various RCA contents and tested against two 0% RCA control mixes made with General Use (GU) cement, and General Use Limestone cement (GUL). The RCA contents in the mixes were 10%, 20%, and 30% by coarse aggregate volume replacement, as well as 10% and 20% fine and coarse (granular) aggregate volume replacement. All evaluated mixes met the specifications from the CSA for fresh, mechanical, and durability properties. The coarse RCA mixes performed better than the granular RCA mixes in terms of flexural and splitting tensile strengths, linear drying shrinkage, water sorptivity, and rapid chloride-ion permeability, where the test results were significantly affected by the ultra fines present in the granular RCA.  相似文献   
9.
Core–shell structures have been proposed to improve the electrical properties of negative-temperature coefficient (NTC) thermistor ceramics. In this work, Al2O3-modified Co1.5Mn1.2Ni0.3O4 NTC thermistor ceramics with adjustable electrical properties were prepared through citrate-chelation followed by conventional sintering. Co1.5Mn1.2Ni0.3O4 powder was coated with a thin Al2O3 shell layer to form a core–shell structure. Resistivity (ρ) increased rapidly with increasing thickness of the Al2O3 layer, and the thermal constant (B) varied moderately between 3706 and 3846 K. In particular, Co1.5Mn1.2Ni0.3O4@Al2O3 ceramic with 0.08 wt% Al2O3 showed the increase of ρ double, and the change in its B was less than 140 K. The Co1.5Mn1.2Ni0.3O4@Al2O3 NTC ceramics showed high stability, and their grain size was relatively uniform due to the protection offered by the shell. The aging coefficient of the ceramic was less than 0.2% after aging for 500 hours at 125°C. Taken together, the results indicate that as-prepared Co1.5Mn1.2Ni0.3O4@Al2O3 NTC ceramics with a core–shell structure may be promising candidates for application as wide-temperature NTC thermistor ceramics.  相似文献   
10.
This paper presents an analytical solution to the non-uniform pressure on thick-walled cylinder. The formulation is based on the linear elasticity theory (plain strain) and stress function method. As an example, the proposed solution is used to model the stress distribution due to non-uniform steel reinforcement corrosion in concrete. The model is formulated considering different scenarios of corrosion pressure distribution. It is validated against the finite element model for different cases of non-uniform pressure distributions. The results show that the corrosion-induced cracks are likely to start just beyond the anodic zone. This is confirmed by the experimental tests on concrete cylinder exposed to non-uniform accelerated corrosion of steel reinforcement. The model can be effectively used to calculate the distribution of corrosion-induced stresses in concrete.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号