首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13367篇
  免费   660篇
  国内免费   268篇
电工技术   314篇
综合类   512篇
化学工业   8738篇
金属工艺   451篇
机械仪表   249篇
建筑科学   733篇
矿业工程   73篇
能源动力   34篇
轻工业   463篇
水利工程   94篇
石油天然气   210篇
武器工业   56篇
无线电   333篇
一般工业技术   1889篇
冶金工业   74篇
原子能技术   22篇
自动化技术   50篇
  2024年   63篇
  2023年   102篇
  2022年   164篇
  2021年   239篇
  2020年   241篇
  2019年   262篇
  2018年   241篇
  2017年   321篇
  2016年   327篇
  2015年   341篇
  2014年   549篇
  2013年   1029篇
  2012年   921篇
  2011年   845篇
  2010年   672篇
  2009年   740篇
  2008年   614篇
  2007年   821篇
  2006年   824篇
  2005年   697篇
  2004年   604篇
  2003年   548篇
  2002年   459篇
  2001年   417篇
  2000年   340篇
  1999年   351篇
  1998年   303篇
  1997年   207篇
  1996年   192篇
  1995年   164篇
  1994年   138篇
  1993年   143篇
  1992年   127篇
  1991年   52篇
  1990年   36篇
  1989年   54篇
  1988年   26篇
  1987年   37篇
  1986年   17篇
  1985年   17篇
  1984年   9篇
  1983年   10篇
  1982年   25篇
  1981年   1篇
  1980年   1篇
  1977年   2篇
  1964年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
This study presents an improved mathematical model to analyse the stress wave propagation in adhesively bonded functionally graded (FG) circular cylinders (butt joint) under an axial impulsive load. The volume fractions of the material constituents in the upper and lower cylinders were functionally tailored through the thickness of each cylinder using a power-law. The effective material properties of both cylinders, which are made of aluminum (Al) and silicon carbide (SiC), at any point were predicted by using the Mori–Tanaka homogenization scheme. In this improved model, the governing equations of the wave propagation include the spatial derivatives of local mechanical properties and were discretized by means of the finite difference method. The influence of these spatial derivatives and the compositional gradient exponent on the displacement and stress distributions of the joint was investigated. The material composition variations of both cylinders affected the displacement and stress fields whereas the compositional gradient exponent had a minor effect. The stress concentrations were alleviated in time, the displacement and stress distributions/variations around/along the upper and lower cylinder-adhesive interfaces were significantly affected by the adhesive layer. The spatial derivatives also affected the temporal histories of the displacement and stress components evaluated at the selected critical points of the upper cylinder, adhesive layer and lower cylinder. The consideration of the spatial local material derivatives provided a more accurate mathematical model of wave propagations through the graded layered structures.  相似文献   
2.
The esophagus is a tubular-shaped muscular organ where swallowed fluids and muscular contractions constitute a highly dynamic environment. The turbulent, coordinated processes that occur through the oropharyngeal conduit can often compromise targeted administration of therapeutic drugs to a lesion, significantly reducing therapeutic efficacy. Here, magnetically guidable drug vehicles capable of strongly adhering to target sites using a bioengineered mussel adhesive protein (MAP) to achieve localized delivery of therapeutic drugs against the hydrodynamic physiological conditions are proposed. A suite of highly uniform microparticles embedded with iron oxide (IO) nanoparticles (MAP@IO MPs) is microfluidically fabricated using the genipin-mediated covalent cross-linking of bioengineered MAP. The MAP@IO MPs are successfully targeted to a specific region and prolongedly retained in the tubular-structured passageway. In particular, orally administered MAP@IO MPs are effectively captured in the esophagus in vivo in a magnetically guidable manner. Moreover, doxorubicin (DOX)-loaded MAP@IO MPs exhibit a sustainable DOX release profile, effective anticancer therapeutic activity, and excellent biocompatibility. Thus, the magnetically guidable locomotion and robust underwater adhesive properties of the proteinaceous soft microbots can provide an intelligent modular approach for targeted locoregional therapeutics delivery to a specific lesion site in dynamic fluid-associated tubular organs such as the esophagus.  相似文献   
3.
This paper deals with three-dimensional non-linear finite element analyses to assess the structural behavior of adhesively-bonded double supported tee joint of laminated FRP composites having embedded interfacial failures. The onset of interfacial failures is predicted by using Tsai–Wu coupled stress failure criterion with pre-determined stress values. The concept of fracture mechanics principle is utilized to study the sustainability of the tee joint having interfacial failures pre-existed at the critical locations. Individual modes of the strain energy release rates (SERR) GI, GII and GIII, are considered as the damage growth parameters and, are evaluated using the Modified crack closure integral (MCCI) technique based on the concept of linear elastic fracture mechanics (LEFM). Based on the stress analyses, it has been observed that the interfacial failures in tee joint structure trigger at the interface of base plate and adhesive layer from both ends of base plate. Depending on the SERR magnitudes, it has been noticed that the interfacial failure propagates under mixed mode condition. Therefore total SERR (GT) is considered as the governing parameter for damage propagation. Furthermore, efforts have been made to retard damage propagation rate by employing functionally graded adhesive (FGA) instead of monolithic adhesive material. Series of numerical simulations have been performed for varied interfacial failure length in functionally graded adhesively bonded double supported tee joint structure in order to achieve the significant effect of FGA with various modulus ratios on SERR. Material gradation of adhesive indicates significant SERR reduction at the incipient stage of failure which necessitates the use of functionally graded adhesive for the tee joint and prolong the service life of the structure.  相似文献   
4.
The enhancement of the thermal conductivity, keeping the electrical insulation, of epoxy thermosets through the addition of pristine and oxidized carbon nanotubes (CNTs) and microplatelets of boron nitride (BN) was studied. Two different epoxy resins were selected: a cycloaliphatic (ECC) epoxy resin and a glycidylic (DGEBA) epoxy resin. The characteristics of the composites prepared were evaluated and compared in terms of thermal, thermomechanical, rheological and electrical properties. Two different dispersion methods were used in the addition of pristine and oxidized CNTs depending on the type of epoxy resin used. Slight changes in the kinetics of the curing reaction were observed in the presence of the fillers. The addition of pristine CNTs led to a greater enhancement of the mechanical properties of the ECC composite whereas the oxidized CNTs presented a greater effect in the DGEBA matrix. The addition of CNTs alone led to a marked decrease of the electrical resistivity of the composites. Nevertheless, in the presence of BN, which is an electrically insulating material, it was possible to increase the proportion of pristine CNTs to 0.25 wt% in the formulation without deterioration of the electrical resistivity. A small but significant synergic effect was determined when both fillers were added together. Improvements of about 750% and 400% in thermal conductivity were obtained in comparison to the neat epoxy matrix for the ECC and DGEBA composites, respectively. © 2019 Society of Chemical Industry  相似文献   
5.
We have investigated the characteristics of radiated electromagnetic (EM) waves from positive and negative partial discharges (PD) in epoxy resin and cross‐linked polyethylene. We found that there is a correlation among the EM level from PD, the positive PD current, and electrical trees. Therefore, the growth of an electrical tree produces a lot of positive PD. We have also investigated the characteristics of the frequency region of EM waves from PD in air, insulating oil, and liquid epoxy in addition to the above insulators. EM waves were detected in the frequency region of 40 MHz to 300 MHz from positive and negative PD in epoxy resin and cross‐linked polyethylene. EM waves were also detected in the frequency region of 40 MHz to 150 MHz from positive and negative PD in air. In the case of insulating oil and liquid epoxy, EM waves were detected in the frequency regions of 40 MHz to 150 MHz from positive PD, and 40 MHz to 250 MHz from negative PD. The frequency region differed depending on the material and the discharge polarity. Our investigation indicates that the cause is differences in electric field strength at the time of PD occurrence.  相似文献   
6.
介绍了动物和植物型非常规蛋白资源的种类及其制备蛋白基木材胶黏剂的研究现状和存在的问题,展望了非常规蛋白胶黏剂的发展前景。  相似文献   
7.
Epoxy novolac/anhydride cure kinetics has been studied by differential scanning calorimetry under isothermal conditions. The system used in this study was an epoxy novolac resin (DEN431), with nadic methyl anhydride as hardener and benzyldimethylamine as accelerator. Kinetic parameters including the reaction order, activation energy and kinetic rate constants, were investigated. The cure reaction was described with the catalyst concentration, and a normalized kinetic model developed for it. It is shown that the cure reaction is dependent on the cure temperature and catalyst concentration, and that it proceeds through an autocatalytic kinetic mechanism. The curing kinetic constants and the cure activation energies were obtained using the Arrhenius kinetic model. A suggested kinetic model with a diffusion term was successfully used to describe and predict the cure kinetics of epoxy novolac resin compositions as a function of the catalyst content and temperature. Copyright © 2003 Society of Chemical Industry  相似文献   
8.
新型壳聚糖/纳米二氧化硅杂化材料的制备与性能   总被引:10,自引:5,他引:5  
在纳米S iO2颗粒表面引入羟丙基氯活性基团,得到功能化S iO2颗粒,再将羟丙基氯化的S iO2颗粒交联固定在壳聚糖上,制备了一种新型的壳聚糖/纳米S iO2杂化材料(简称杂化材料);通过傅里叶变换红外光谱、透射电镜、扫描电镜方法对杂化材料进行表征,采用热重(TG)分析研究杂化材料的热性能;考察了杂化材料的沉降速率和对金属离子Ca2+和M g2+的吸附能力。电镜分析结果表明,杂化材料微粒为纳米尺度的无机S iO2加强化的微粒,S iO2颗粒分散在材料中,形成均匀的表面;TG分析结果表明,杂化材料的热性能有所提高;沉降实验测得壳聚糖和杂化材料作为吸附剂的沉降时间分别为130.3,68.5s,表明杂化材料的沉降速率比壳聚糖的沉降速率快了近一倍;杂化材料对金属离子Ca2+和M g2+的吸附量分别可达到0.289 3,1.445 6mm ol/g。  相似文献   
9.
T-ZnO晶须增强环氧树脂复合材料的力学行为   总被引:10,自引:0,他引:10  
研究了以四脚状氧化锌(T-ZnO)晶须为增强剂,环氧树脂复合材料的力学行为。结果表明,由具有三维空间结构的T-ZnO晶须为增强剂所制备的环氧树脂复合材料具有各向同性的力学性能,T-ZnO晶须填加质量分数为6%时,就可使材料的力学性能改善;拉伸强度提高到169%,拉伸功几乎提高了100%,冲击强度提高到300%,抗弯的断裂功提高到158%,而压缩强度略有下降。  相似文献   
10.
余满春  张立红 《辽宁化工》2003,32(8):354-356
介绍了书籍装订热熔胶生产工艺及产品的技术指标,对1000t/a生产装置的投资与产品成本进行了核算。分析结果表明,总投资110万元,年利润达266万元。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号