首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   5篇
化学工业   27篇
金属工艺   3篇
建筑科学   50篇
一般工业技术   40篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   2篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   8篇
  2006年   4篇
  2005年   6篇
  2004年   5篇
  2003年   9篇
  2002年   2篇
  2001年   3篇
  2000年   9篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1975年   3篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
1.
The investigations of advanced ferritic/martensitic 11–12 %Cr steels for 650 °C power plant components focus on the improvement of high‐temperature creep properties with respect to chemical composition. The claim of the DFG research work was the development of new heat‐resistant 12 %Cr ferritic‐martensitic steels with sufficient creep and oxidation resistance for a 650 °C application by using basic principles and concepts of physical metallurgy on the basis of the state of art and to overcome the usual trial and error industrial alloy development. Efforts are focussed on a 100,000h creep strength of 100MPa at 650 °C in combination with a sufficient corrosion resistance by a Cr content of 12 % with contents 4‐5 %W, 3.4‐5,5 %Co, V, B and 1 %Cu as well as the choice of Ta or Ti instead of Nb. The results demonstrate that the aim is not to realize with the used alloying concept. In the long term range all 12 %Cr melts have a lower creep rupture strength than the advanced 9 %Cr piping steel P92. A high creep strength could be reached with a 0.06 % Ta alloyed 11 %Cr melt, which is in addition alloyed with a higher C and B content and as well as with lower W and Co portions. The results indicate in accordance with the finding of other steel researcher that a lower Cr content allows more effectiveness for the alloying partners respectively for the generation of more stable precipitates.  相似文献   
2.
Advanced multiphase steels offer a great potential for bodies‐in‐white through their combination of formability and achievable component strength levels. They are first choice for strength and crash‐relevant parts of challenging geometry. The intensive development of high‐strength multiphase steels by ThyssenKrupp has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex phase steels are currently produced in addition to cold rolled DP and RA steels. New continuously annealed grades with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for applications mainly in the field of structural automobile elements make use of the classic advantages of microalloying as well as the principles of DP and TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels.  相似文献   
3.
Wear Resistant Fe‐Base Alloys with Niobium Carbide Martensitic Fe‐base alloys from the system Fe‐Cr‐C are widely used as chilled cast irons and tool steels. Because of the low hardness of their FeCr‐carbides this paper reports about new alloys with primarily solidified harder niobium carbides. It focuses on a secondary hardenable welding alloy, a coating material for composite castings, a chilled casting and a corrosion resistant cold work tool steel, which are investigated with respect to their process related microstructure and abrasive wear behaviour.  相似文献   
4.
5.
6.
7.
8.
9.
10.
The formation of martensite in metastable austenitic stainless steels was investigated. The results showed that the formation of martensite in 304 grade stainless steels due to the exposure to cryogenic temperatures is negligible. The amount of formed martensite is dependent on the chemical composition of the actual heat but for standard grades the amount is not expected to exceed a very few percent. In welds the formation of martensite is not promoted by the presence of δ‐ferrite. The formation of martensite due to cold forming at room temperature can reach around 20 %. Cold forming with subsequent exposure to cryogenic temperatures does not lead to additional formation of martensite due to the exposure to low temperatures. Cold forming at low temperatures leads to the highest amount of martensite formed in metastable stainless steels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号