首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41468篇
  免费   5503篇
  国内免费   2163篇
电工技术   828篇
技术理论   1篇
综合类   2929篇
化学工业   12699篇
金属工艺   8173篇
机械仪表   3211篇
建筑科学   3515篇
矿业工程   1287篇
能源动力   757篇
轻工业   1776篇
水利工程   569篇
石油天然气   819篇
武器工业   644篇
无线电   995篇
一般工业技术   7111篇
冶金工业   2583篇
原子能技术   155篇
自动化技术   1082篇
  2024年   260篇
  2023年   974篇
  2022年   1431篇
  2021年   2072篇
  2020年   1856篇
  2019年   1515篇
  2018年   1552篇
  2017年   1843篇
  2016年   1897篇
  2015年   1930篇
  2014年   2393篇
  2013年   2712篇
  2012年   3046篇
  2011年   2915篇
  2010年   2136篇
  2009年   2271篇
  2008年   1906篇
  2007年   2432篇
  2006年   2371篇
  2005年   1806篇
  2004年   1667篇
  2003年   1291篇
  2002年   1082篇
  2001年   992篇
  2000年   838篇
  1999年   655篇
  1998年   584篇
  1997年   498篇
  1996年   414篇
  1995年   322篇
  1994年   286篇
  1993年   206篇
  1992年   205篇
  1991年   147篇
  1990年   134篇
  1989年   170篇
  1988年   52篇
  1987年   50篇
  1986年   29篇
  1985年   39篇
  1984年   32篇
  1983年   37篇
  1982年   41篇
  1980年   12篇
  1979年   8篇
  1978年   5篇
  1975年   2篇
  1974年   3篇
  1966年   2篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The aim of this work was to investigate the physical and mechanical performance of architectural polyester (PES)–poly(vinyl chloride) (PVC) membranes exposed to different artificial aging conditions. Two commercially available architectural membranes were chosen as research objects. The durability of the PES/PVC fabrics was evaluated by the loss in mechanical performance, scanning electron microscopy, and X-ray diffraction analysis in order to understand the effect of the degradation agents on the surface of the membranes. The mechanical performance of the PES/PVC membranes was unchanged. Scanning electron microscopy images of the tested materials showed initial cracks after aging. The X-ray fluorescence analysis showed that at the time of aging, the amount of Cl and Si decreased slightly, while Ti decreased by half, and Ca by volume increased twice. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47523.  相似文献   
2.
3.
4.
The effect of the emergency perception of bystanders of cyberbullying victims on helping behaviors is often neglected in research on cyberbullying. In this study, we explored the influence of this cognitive factor on cyber-bystanders’ helping tendencies as well as elucidated possible underlying processes. The results of two studies were reported. In Study 1, 150 undergraduates read a true case of a girl experiencing cyberbullying. The results indicated that when the participants perceived the victim’s situation to be more critical (i.e., higher emergency perception), their helping tendencies were stronger, partly through increased state empathy followed by feelings of responsibility to help. In Study 2, we randomly assigned 300 undergraduates to two groups. The low emergency group read the same cyberbullying case as Study 1, whereas the cyberbullying case read by the high emergency group contained additional emergency information of the victim. The results indicated that the high emergency group expressed stronger helping tendencies than did the low emergency group. This effect was caused by a stronger perception that the victim was in an emergency situation, which not only strengthened the participants’ helping tendencies directly but also indirectly through increasing their state empathy and feelings of responsibility to help.  相似文献   
5.
In this study, seven different filler materials in different proportions were added to a Ba-Ca-Si glass matrix “H” to investigate new sealant with higher thermal expansion coefficient (CTE) value and good sealing performance for application in oxygen transport membrane (OTM). SrTi0.75Fe0.25O3-δ (STF25) was used as an OTM, and the sealing partners were ferritic steel Aluchrom and pre-oxidized Aluchrom. Compatibility tests were carried out to investigate the feasibility of the composites. Higher CTE values were found in dilatometer tests on composite samples by adding 40 wt% Ag (HAg40) and 30 wt% Ni-Cr (HNC30). Gas-tightness measurements of sandwiched samples produced appropriate helium leakage rates in the range of 10?6 mbar·l·s?1. Sealing behaviour of sealants HAg40 and HNC30 were investigated by joining STF25 and as-delivered/pre-oxidized Aluchrom together. Scanning electron microscopy (SEM) on cross-sections of the joints revealed a homogeneous microstructure and good adherence of the glass sealants to support metals and STF25.  相似文献   
6.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
7.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   
8.
The aim of this study was to develop high dielectric constant flexible polymers with a highly efficient and cost‐effective approach using acrylonitrile butadiene rubber (NBR) as the polymer matrix and barium titanate (BT) as the high dielectric constant filler. The BT powder was synthesized with a solid‐state reaction and was characterized using a particle size analyzer, XRD, SEM and Fourier transform infrared spectroscopy. NBR/BT composites were fabricated using an internal mixer with various BT loadings up to 160 phr. The influence of BT loading on the cure characteristics and mechanical, dynamic mechanical, thermal, dielectric and morphological properties was determined. The incorporation of BT in the NBR matrix shortened scorch time and increased delta torque. The mechanical properties, thermal stability and dielectric constant were greatly improved and increased with BT loading. The results suggest that the reinforcement effect was achieved due to strong hydrogen bonding or polar–polar interactions between NBR matrix and BT filler. This is further corroborated by the good dispersion of BT filler in the NBR matrix observed with SEM imaging. These findings can be applied to produce high‐performance dielectric elastomers. © 2020 Society of Industrial Chemistry  相似文献   
9.
In this study, the hydraulic reactivity and cement formation of baghdadite (Ca3ZrSi2O9) was investigated. The material was synthesized by sintering a mixture of CaCO3, SiO2, and ZrO2 and then mechanically activated using a planetary mill. This leads to a decrease in particle and crystallite size and a partial amorphization of baghdadite as shown by X-ray powder diffraction (XRD) and laser diffraction measurements. Baghdadite cements were formed by the addition of water at a powder to liquid ratio of 2.0 g/ml. Maximum compressive strengths were found to be ~2 MPa after 3-day setting for a 24-h ground material. Inductively coupled plasma mass spectrometry (ICP-MS) measurements showed an incongruent dissolution profile of set cements with a preferred dissolution of calcium and only marginal release of zirconium ions. Cement formation occurs under alkaline conditions, whereas the unground raw powder leads to a pH of 11.9 during setting, while prolonged grinding increased pH values to approximately 12.3.  相似文献   
10.
Nowadays, oil pollution has become more serious, which causes great threats both to the ecological environment and human life. In this study, a novel type of multifunctional deacetylated cellulose acetate/polyurethane (d-MCA:MTPU) composite nanofiber membranes for oil/water separation are successfully fabricated by electrospinning, which show super-amphiphilicity in air, super-hydrophilicity in oil, and oleophobicity in water. All the d-MCA:MTPU composite nanofiber membranes with different mass ratios can be used as water-removing, oil-removing, and emulsion separation substance only by gravity driving force. The highest separation flux for water and oil reaches up to 37 000 and 74 000 L m−2 h−1, respectively, and all the separation efficiencies are more than 99%. They have outstanding comprehensive mechanics performance, which can be controlled by simply adjusting the mass ratios. They show excellent antifouling and self-cleaning ability, endowing powerful cyclic stability and reusability. Those results show that d-MCA:MTPU composite nanofiber membranes have great application prospects in oil/water separation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号