首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61500篇
  免费   3725篇
  国内免费   2251篇
电工技术   1360篇
技术理论   2篇
综合类   3825篇
化学工业   20059篇
金属工艺   7987篇
机械仪表   1827篇
建筑科学   9910篇
矿业工程   1648篇
能源动力   1321篇
轻工业   4981篇
水利工程   1487篇
石油天然气   1629篇
武器工业   283篇
无线电   1243篇
一般工业技术   7180篇
冶金工业   1837篇
原子能技术   491篇
自动化技术   406篇
  2024年   214篇
  2023年   697篇
  2022年   1311篇
  2021年   1518篇
  2020年   1430篇
  2019年   1302篇
  2018年   1303篇
  2017年   1660篇
  2016年   1636篇
  2015年   1868篇
  2014年   3152篇
  2013年   3219篇
  2012年   4339篇
  2011年   4692篇
  2010年   3680篇
  2009年   3702篇
  2008年   3178篇
  2007年   4139篇
  2006年   4112篇
  2005年   3395篇
  2004年   2785篇
  2003年   2446篇
  2002年   2158篇
  2001年   1787篇
  2000年   1603篇
  1999年   1340篇
  1998年   1069篇
  1997年   786篇
  1996年   654篇
  1995年   531篇
  1994年   432篇
  1993年   351篇
  1992年   311篇
  1991年   163篇
  1990年   120篇
  1989年   114篇
  1988年   60篇
  1987年   43篇
  1986年   38篇
  1985年   36篇
  1984年   18篇
  1983年   20篇
  1982年   8篇
  1981年   8篇
  1980年   21篇
  1979年   4篇
  1975年   2篇
  1974年   2篇
  1959年   7篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
With a growing interest in hydrogen as energy carrier, the efficient purification of hydrogen from gaseous mixtures is very important. This paper addresses the separation of hydrogen using Carbon Molecular Sieves Membranes (CMSM), which show an attractive combination of high permeability, selectivity and stability. Supported CMSM containing various amounts of aluminium have been prepared from novolac and aluminium acetyl acetonate (Al(acac)3) as carbon and alumina precursors. The thickness of the CMSM layers depend on the content of Al(acac)3 in the dipping solution, which also has influence in the pore size and pore size distribution of the membranes. The permeation properties of the membranes against the Al content in the membrane follows a volcano shape, where the membrane containing 4 wt (%) of Al(acac)3 has the best properties and was stable during 720 h for hydrogen at 150 °C and 6 bar pressure difference. All the CMSM have permeation properties well above the Robeson Upper limit.  相似文献   
2.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
3.
Mass transfer in polycrystalline Yb2SiO5 wafers with precise composition control was evaluated and analyzed by oxygen permeation experiments at high temperatures using an oxygen tracer. Oxygen permeation proceeded due to mutual grain boundary diffusion of oxide ions and Yb ions without synergistic effects such as acceleration or suppression. The oxygen shielding properties of Yb2SiO5 were compared with those of the other line compounds such as Yb2Si2O7 and Al2O3 based on the determined mass transfer parameters. It was found that the more preferentially an oxide ion diffuses in the grain boundary compared to the interior of the grain, the greater the effect of suppressing the movement of the oxide ion by applying an oxygen potential gradient becomes.  相似文献   
4.
A silica-based glass-ceramic, with Y2Ti2O7 as the major crystalline phase, is designed, characterised and tested as an oxidation-protective coating for a titanium suboxide (TiOx) thermoelectric material at temperatures of up to 600 °C. The optimised sinter-crystallisation treatment temperatures are found to be 1300 °C and 855 °C for a duration of 30 min, and this treatment leads to a glass-ceramic with cubic Y2Ti2O7 and CaAl2Si2O8 as crystalline phases. An increase of ~270 °C in the dilatometric softening temperature is observed after devitrification of the parent glass, thus further extending its working temperature range.Excellent adhesion of the glass-ceramic coating to the thermoelectric material is maintained after exposure to a temperature of 600 °C for 120 h under oxidising conditions, thus confirming the effectiveness of the T1 glass-ceramic in protecting the TiOx material.  相似文献   
5.
In an attempt to optimize the properties of FeCoNi coating for planar solid oxide fuel cell (SOFC) interconnect application, the coating composition is modified by increasing the ratio of Fe/Ni. An Fe1·5CoNi0.5 (Fe:Co:Ni = 1.5:1:0.5, atomic ratio) metallic coating is fabricated on SUS 430 stainless steel by magnetron sputtering, followed by oxidation in air at 800°C. The Fe1·5CoNi0.5 coating is thermally converted to (Fe,Co,Ni)3O4 and (Fe,Co,Mn,Ni)3O4 without (Ni,Co)O particles. After oxidation for 1680 h, no further migration of Cr is detected in the thermally converted coating region. A low oxidation rate of 5.9 × 10?14 g2 cm?4 s?1 and area specific resistance of 12.64 mΩ·cm2 is obtained for Fe1·5CoNi0.5 coated steels.  相似文献   
6.
In this present work, the effect of lanthanum oxides (La2O3) on the thermal cycle behavior of TBC coatings and mechanical properties such as adhesion strength and microhardness of 8% Yttria Stabilized Zirconia (8YSZ) TBCs were investigated. CoNiCrAlY and aluminium alloy (Al–13%Si) were used as bond coat and substrate materials. 8YSZ and different wt % of La2O3 (10, 20, and 30%) top coatings were applied using the atmospheric plasma spray (APS) method. The thermal cycling test for TBC coated samples were conducted at 800 °C in the electric furnace. The XRD pattern shows that the La2O3 doped 8YSZ material transformed to cubic pyrochloric structured La2Zr2O7 during thermal cycling. Further, the Taguchi-based grey relation analysis (GRA) method was applied to optimize the TBC coating parameters to achieve better mechanical properties such as adhesion strength and microhardness. And the optimized La2O3/8YSZ TBC coating was coated on CRDI engine combustion chamber components. The engine was tested with microalgae biodiesel and hydrogen, and the results were promising for the TBC-coated engine. The engine performance increased while using La2O3/8YSZ coated components, and the emissions from engine exhaust gas such as CO, HC, and smoke reduced considerably. It was found that there was no separation crack and spallation of the coating layer in the microstructure. Ultimately, the microstructural analysis of the optimized TBC coated piston sample after 50 h of running in the diesel engine confirmed that the developed coating had a superior thermal insulation effect and longer life.  相似文献   
7.
This work focuses on identifying the rate-determining step of oxygen transport through La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes with symmetric and asymmetric architectures. The best oxygen semipermeation fluxes are 3.4 10−3 mol. m-2.s-1 and 6.3 10−3 mol. m-2.s-1 at 900 °C for the symmetric membrane and asymmetric membrane with a modified surface. The asymmetric membrane with a modified surface leads to an increase of approximately 7 times the oxygen flux compared to that obtained with the La0.5Sr0.5Fe0.7Ga0.3O3-δ dense membrane without surface modification. This work also shows that the oxygen flux is mainly governed by gaseous oxygen diffusion through the porous support of asymmetric La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes.  相似文献   
8.
A novel carbon/m-HNTs composite aerogel was synthesized by introducing the modified halloysite nanotubes (m-HNTs) into phenolic (PR) aerogels through chemical grafting, followed with carbonization treatment. In order to explore the best proportion of HNTs to phenolic, the micromorphology of PR/m-HNTs were investigated by SEM before carbonization, confirming 10 wt% of m-HNTs is most beneficial to the porous network of aerogels. The interaction between PR and HNTs was studied by FTIR spectra, and microstructure evolution of the target product-carbon/m-HNTs composite aerogel were illustrated by SEM and TEM techniques. SEM patterns indicated that the carbon/m-HNTs aerogels maintain a stable porous structure at 1000 °C (carbonization temperature), while a ~20 nm carbon layer was formed around m-HNTs generating an integral unit through TEM analysis. Specific surface area and pore size distribution of composite aerogels were analyzed based on mercury intrusion porosimetry and N2 adsorption–desorption method, the obtained results stayed around 500 m2g?1 and 1.00 cm3g?1 (pore volume) without significant discrepancy, compared with pure aerogel, showing the uniformity of pore size. The weight loss rate (26.76%) decreased greatly compared with pure aerogel, at the same time, the best volumetric shrinkage rate was only 30.83%, contributed by the existence of HNTs supporting the neighbor structure to avoid over-shrinking. The highest compressive strength reached to 4.43 MPa, while the data of pure aerogel was only 1.52 MPa, demonstrating the excellent mechanical property of carbon/m-HNTs aerogels.  相似文献   
9.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
10.
杨立宁  郑东昊  王立新  杨光 《化工进展》2022,41(11):5961-5967
以具有轻质高强优异性能的蜻蜓翅脉结构为设计灵感,在分析翅脉网格结构抗冲击原理的基础上,设计了传统和仿生两类对比结构。采用熔融挤出3D打印机成功制备了具有不同结构的连续碳纤维增强聚乳酸复合材料试样,并对不同结构复合材料试样的拉伸性能和抗冲击性能进行了测试和对比分析。研究分析结果表明:由于拉伸力方向上的连续碳纤维含量相对较少,限制了仿生结构复合材料抗拉强度的提高,但仿生结构的平均抗拉强度为传统结构的1.18倍;当仿生结构复合材料试样受到冲击力时,其内部六边形结构的连接角度会发生变化,从而极大消耗冲击能量,同时具有六边形网格结构的连续碳纤维可以有效阻碍裂纹的扩展,因此仿生结构的平均冲击韧性可以达到传统结构的2.46倍;仿生蜻蜓翅脉结构可以显著提高增材制造复合材料的综合力学性能,且对于抗冲击性能的提高具体突出效果。连续碳纤维增强树脂基复合材料的有效可行的仿生蜻蜓翅脉结构设计和增材制造,可极大扩展其在高冲击载荷领域中的相应应用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号