首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
化学工业   8篇
建筑科学   12篇
矿业工程   1篇
  2020年   1篇
  2019年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
排序方式: 共有21条查询结果,搜索用时 0 毫秒
1.
Moisture Distribution and Dewatering Efficiency for Wet Materials   总被引:3,自引:0,他引:3  
This review paper summarizes current research efforts toward a comprehensive view of wet material dewatering, considering the binding energy as the strength to hold water, and rupture energy given to remove moisture from materials.  相似文献   
2.
A pilot-scale sludge treatment plant was built to investigate the feasibility of ozonation processes for waste activated sludge treatment. Ozonation of wastewater sludge resulted in mass reduction by mineralization as well as by supernatant and filtrate recycle. Another advantage of sludge ozonation is a significant improvement of settleability and dewaterability. Experimental results showed that mass reduction of 70% and volume reduction of 85% compared with the control sludge was achieved through the sludge ozonation at a dose of 0.5?gO3/gDS. It is also interesting to note that the filterability deteriorates up to ozone dose of 0.2?gO3/gDS and then improves considerably at a higher ozone dose. The filterability could be improved by chemical conditioning even at a low ozone dose. The economic feasibility by cost analysis reveals that ozonation processes can be more economical than other alternative processes for sludge treatment and disposal at small-sized wastewater treatment plants.  相似文献   
3.
Sludge dewatering is of major interest in sludge volume reduction and handling properties improvement. Here we report an approach of fluorescence excitation-emission matrix (EEM) combined with parallel factor (PARAFAC) analysis to elucidate the factors that influence sludge dewaterability. Sludge flocs from 11 full-scale wastewater treatment plants were collected to stratify into different extracellular polymeric substances (EPS) fractions and then to characterize their fluorescence EEMs. Both the normalized capillary suction time (CST) and specific resistance to filtration (SRF) were applied to determine sludge dewaterability. The results showed that fluorescence EEMs of tightly bound fractions were not affected by the wastewater sources. In contrast, fluorescence EEMs of loosely bound fractions were affected by the wastewater sources. All the fluorescence EEMs could be successfully decomposed into a six-component model by PARAFAC analysis. Both normalized CST and SRF were significantly correlated with component 1 [excitation/emission (Ex/Em) = (220, 275)/350] in the supernatant fraction, with components 5 [Ex/Em = (230, 280)/430] and 6 [Ex/Em = (250, 360)/460] in the slime and LB-EPS fraction. These results reveal that except for proteins-like substances (component 1), sludge dewaterability is also affected by humic acid-like and fulvic acid-like substances (components 5 and 6) in the slime and LB-EPS fractions. Furthermore, this paper presents a promising and facile approach (i.e., EEM-PARAFAC) for investigating sludge dewaterability.  相似文献   
4.
Microbial flocculant (MBF) TJ-F1 with high flocculating activity was investigated to be used as a novel conditioner for the enhanced dewaterability of the waste sludge from wastewater treatment plant (WWTP). The experimental results showed that TJ-F1 was better than poly(acrylamide [2-(Methacryloyloxy)ethyl]trimethylammonium chloride) (P(AM-DMC)), the most commonly used conditioner in China, in improving the dewaterability of the waste sludge in terms of both the specific resistance in filtration (SRF) and the time to filter (TTF). The key parameters influencing the dewaterability of the waste sludge conditioned by TJ-F1, including the system pH, CaCl2 concentration and TJ-F1 concentration, were systematically investigated. The favorite pH for the conditioning process was around the neutral. CaCl2 was found to be a good conditioning aid to TJ-F1. A right dosage of TJ-F1 was decisive for the conditioning process. The optimized conditioning process is that about 0.17% (w/w) TJ-F1 and 1.3% (w/w) CaCl2 are added into the sludge, and then the system pH was adjusted to 7.5. The compound use of TJ-F1 and P(AM-DMC) was also testified to be feasible in improving the dewaterability of the waste sludge.  相似文献   
5.
Hydrothermal carbonization of sewage sludge was carried out with the aim to evaluate the influence of process severity and initial solid content. Response surface methodology was applied to model yield and C yield responses. Enhanced dewaterability performance was recorded under mild processing conditions. The treatment promoted concentration and immobilization of Pb, Cd, Ni, Zn, and Cu. Variation of the solid content showed a stronger influence than severity on average yield and C yield. Higher heating values (HHVs) and energy retention efficiencies (EREs) of hydrochars obtained at the lowest solid content displayed the lowest values. Hence, the energy requirements of a first dewatering step should be compared with the related improvement in terms of HHV and ERE when sludge is used as feedstock.  相似文献   
6.
This review paper summarizes current research efforts toward a comprehensive view of wet material dewatering, considering the binding energy as the strength to hold water, and rupture energy given to remove moisture from materials.  相似文献   
7.
Li XY  Yang SF 《Water research》2007,41(5):1022-1030
Laboratory experiments on the activated sludge (AS) process were carried out to investigate the influence of microbial extracellular polymeric substances (EPS), including loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS), on biomass flocculation, sludge settlement and dewaterability. The heat EPS extraction method was modified to include a mild step and a harsh step for extracting the LB-EPS and TB-EPS, respectively, from the sludge suspension. Six lab-scale AS reactors were used to grow AS with different carbon sources of glucose and sodium acetate, and different sludge retention times (SRTs) of 5, 10 and 20 days. The variation in the bioreactor condition produced sludge with different abundances of EPS and different flocculation and separation characteristics. The sludge that was fed on glucose had more EPS than the sludge that was fed on acetate. For any of the feeding substrates, the sludge had a nearly consistent TB-EPS value regardless of the SRT, and an LB-EPS content that decreased with the SRT. The acetate-fed sludge performed better than the glucose-fed sludge in terms of bioflocculation, sludge sedimentation and compression, and sludge dewaterability. The sludge flocculation and separation improved considerably as the SRT lengthened. The results demonstrate that the LB-EPS had a negative effect on bioflocculation and sludge-water separation. The parameters for the performance of sludge-water separation were much more closely correlated with the amount of LB-EPS than with the amount of TB-EPS. It is argued that although EPS is essential to sludge floc formation, excessive EPS in the form of LB-EPS could weaken cell attachment and the floc structure, resulting in poor bioflocculation, greater cell erosion and retarded sludge-water separation.  相似文献   
8.
Real-scale thermal filter press dewatering equipment (plate size: 630 mm × 630 mm) was installed and operated at a waterworks for one year in an attempt to achieve sludge reduction. During the period, the dewaterability was evaluated according to the seasonal sludge properties in order to compare the dewaterability of thermal dewatering and mechanical dewatering, as well as to determine the economics of thermal dewatering. According to the results, the winter season sludge showed a 36% decrease in water content and a two-thirds reduction in dewatering velocity compared to the summertime sludge. In addition, the dewatered cakes of the thermal filter press dewatering equipment showed a lower specific cake resistance and water content in the dewatered cakes than the mechanical filter press dewatering equipment, indicating superior dewaterability. This was attributed to the easier removal of the filtrate remaining in the capillary tubes due to thermal dewatering. The energy consumption for thermal dewatering was 300 kJ/dry solids (DS) kg. A comparison of the sludge dryers indicated that it is possible to produce dewatered cakes that consume less energy and can be recycled. According to the performance evaluation results, the real-scale thermal filter press dewatering equipment had high adaptability to the changes in seasonal sludge, showing excellent dewaterability compared to the mechanical filter press dewatering equipment, and was economical due to the lower energy consumption.  相似文献   
9.
A study was conducted to evaluate the settleability and dewaterability of fungal treated and untreated sludge using liquid state bioconversion process. The fungal mixed culture of Aspergillus niger and Penicillium corylophilum was used for fungal pretreatment of wastewater sludge. The fungal strains immobilized/entrapped on sludge particles with the formation of pellets and enhanced the separation process. The results presented in this study showed that the sludge particles (pellets) size of 2-5mm of diameter were formed with the microbial treatment of sludge after 2 days of fermentation that contained maximum 33.7% of total particles with 3-3.5mm of diameter. The settling rate (measured as total suspended solids (TSS) concentration, 130 mg/l) was faster in treated sludge than untreated sludge (TSS concentration, 440 mg/l) after 1 min of settling time. In 1 min of settling operation, 86.45% of TSS was settled in treated sludge while 4.35% of TSS settled in raw sludge. Lower turbidity was observed in treated sludge as compared to untreated sludge. The results to specific resistance to filtration (SRF) revealed that the fungal inoculum had significant potentiality to reduce SRF by 99.8% and 98.7% for 1% w/w and 4% w/w of TSS sludge, respectively. The optimum fermentation period recorded was 3 days for 1% w/w sludge and 6 days for 4% w/w sludge, respectively, for dewaterability test.  相似文献   
10.
We examined in this study the use of a “high-speed” freezing technique, with the assistance of liquid nitrogen freezing, to condition an activated sludge and an alum sludge. The freezing speed reached up to 200 µm/s (0.72 m/h), which is much faster than that adopted in most literature works on sludge freezing. After 3-min liquid nitrogen freezing the alum sludge could achieve finite improvement of dewaterability. Such an improvement is not noticeable for activated sludge. Curing has no effect on both sludges after liquid nitrogen freezing. However, curing does have profound influence on the slow-freezing activated sludge. The underlying mechanisms and the feasibility of using high-speed freezing to condition sludge are proposed and commented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号