首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   412篇
  免费   17篇
  国内免费   14篇
综合类   3篇
化学工业   108篇
金属工艺   86篇
机械仪表   6篇
建筑科学   1篇
矿业工程   28篇
能源动力   51篇
石油天然气   1篇
无线电   5篇
一般工业技术   97篇
冶金工业   44篇
原子能技术   9篇
自动化技术   4篇
  2023年   13篇
  2022年   8篇
  2021年   20篇
  2020年   14篇
  2019年   8篇
  2018年   19篇
  2017年   13篇
  2016年   13篇
  2015年   5篇
  2014年   14篇
  2013年   38篇
  2012年   16篇
  2011年   28篇
  2010年   24篇
  2009年   22篇
  2008年   28篇
  2007年   27篇
  2006年   17篇
  2005年   7篇
  2004年   12篇
  2003年   19篇
  2002年   10篇
  2001年   7篇
  2000年   14篇
  1999年   4篇
  1998年   5篇
  1997年   5篇
  1996年   6篇
  1995年   1篇
  1994年   2篇
  1993年   6篇
  1992年   9篇
  1991年   4篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
排序方式: 共有443条查询结果,搜索用时 15 毫秒
1.
Grain refinement is critical for fabricating high-quality Al-Si casting components in the application of automobile and aerospace industries,while the well-known Si-poisoning effect makes it difficult.Nbbased refiners offer an effective method to refine Al-Si casting alloys,but their anti Si-poisoning capability is far from being understood.In this work,the grain refining mechanism and the anti Si-poisoning effect in the Al-10 Si/Al-5 Nb-B system were systematically investigated by combining transmission electron microscope,first-principles calculations,and thermodynamic calculations.It is revealed that NbB2provides the main nucleation site in the Al-10 Si ingot inoculated by 0.1 wt.%Nb Al-5 Nb-B refiner.The exposed Nb atoms on the(0001)NbB2and(1-100)NbB2surface can be substituted by Al to form(Al,Nb)B2intermedia layers.In addition,a layer of NbAl3-like compound(NbAl3')can cover the surface of NbB2with the orientation relation of(1-100)[11-20]NbB2//(110)[110]NbAl3'.Both of the(Al,Nb)B2and NbAl3'intermedia layers contribute to enhancing the nucleation potency of NbB2particles.These discoveries provide fundamental insight to the grain refining mechanism of the Nb-B based refiners for Al-Si casting alloys and are expected to guide the future development of stronger refiners for Al-Si casting alloys.  相似文献   
2.
This work demonstrates a facile Nb2O5-decorated electrocatalyst to prepare cost-effective Ni–Fe–P–Nb2O5/NF and compared HER & OER performance in alkaline media. The prepared electrocatalyst presented an outstanding electrocatalytic performance towards hydrogen evolution reaction, which required a quite low overpotential of 39.05 mV at the current density of ?10 mA cm?2 in 1 M KOH electrolyte. Moreover, the Ni–Fe–P–Nb2O5/NF catalyst also has excellent oxygen evolution efficiency, which needs only 322 mV to reach the current density of 50 mA cm?2. Furthermore, its electrocatalytic performance towards overall water splitting worked as both cathode and anode achieved a quite low potential of 1.56 V (10 mA cm?2).  相似文献   
3.
Maria Ziolek   《Catalysis Today》2003,78(1-4):47-64
This review article is devoted to the materials containing niobium, which have been discovered or developed in the past few years and exhibit the potential application in heterogeneous catalysis. Niobium oxides and mixed oxides as well as sulfides, nitrides (oxynitrides), carbides (oxycarbides), and phosphates are considered. Among the catalytic processes in which Nb-containing materials were tested, liquid and gas phase oxidation is described in details, and the role of niobium in the prevention of the catalyst from SO2 poisoning is mentioned.  相似文献   
4.
The effect of the ion bombardment to unbalanced magnetron deposited, approximately 1.5 and 4.5 μm thick, Nb coatings have been investigated as the bias voltage was varied from UB=−75 to −150 V. Increasing bias voltage increased the hardness of the coating from 4.5 to 8.0 GPa. This was associated with residual stress and Ar incorporation into the Nb lattice. Strong {110} texture developed in the samples deposited at low bias voltages, while beyond UB=−100 V a {111} texture became dominant. However, strong {111} texture was observed only with the thicker 3Nb coatings. Secondary electron microscopy investigation of the coating topography showed fewer defects in the thicker coatings. All coatings exhibited good corrosion resistance, with the thicker coatings clearly outperforming the thinner ones. Excessive bias voltages (UB=−150 V) was found to lead to poor adhesion and loss of corrosion resistance.  相似文献   
5.
介绍了用背散射象法、彩色金相法和扫描电镜分析区别铬碳化物和铌碳化物。  相似文献   
6.
A study of modified carbon paste electrode employing Nile blue (NB) adsorbed on silica gel modified with niobium oxide (SN) for electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH) is described. The adsorbed organic dye on SN was used to prepare a modified carbon paste electrode to investigate its electrochemical properties. The formal potential (E°′) of the adsorbed NB (−230 mV vs. saturated calomel electrode, SCE) showed a shift of 70 mV towards a more positive potential value, compared to NB dissolved in aqueous solution. In solutions with pH between 6.0 and 8.0 did stability and E°′ remained almost constant. However, for a solution pH lower than 6.0 the E°′ was affected by the acidity of the contacting solution, shifting the E°′ towards more positive values. For the solution pHs between 6.0 and 8.0 the electrocatalytic activity remained almost constant. A linear response range for NADH between 1.0×10−5 and 5.2×10−4 mol l−1, at pH 7.0, was observed for the electrode, with an applied potential of −200 mV versus SCE. The formation of an intermediate charge transfer (CT) complex was proposed to the CT reaction between NADH and adsorbed NB. The heterogeneous electron transfer rate, kobs, was 1400 M−1 s−1 and the apparent Michaelis-Menten constant, was 0.21 mM at pH 7.0 evaluated from rotating disk electrode (RDE) experiments with an electrode coverage of about 5.2×10−9 mol cm−2. The increase in the reaction rate between NADH and the immobilized NB compared to those obtained with dissolved NB was assigned to the shift of the E°′ towards more positive values.  相似文献   
7.
The activity of NiMoS catalysts supported on niobia, alumina, and niobia/alumina was compared for the thiophene hydrodesulfurization (HDS) and 2,6-dimethylaniline (2,6-DMA) hydrodenitrogenation (HDN) reactions. To evaluate the acidity of the supports and identify the nature of the sulfide sites, adsorption of 2,6-dimethylpyridine, pyridine, and CO was performed and followed by IR spectroscopy. This study has shown that with niobia as a support, the activity of NiMoS catalysts in thiophene HDS and in HDN of 2,6-DMA was no longer promoted by the synergy between Ni and Mo. The absence of synergy between molybdenum and nickel on niobia can be explained by the strong interaction of each metal with niobia at the expense of interaction with each other. Moreover, it has been shown that on a niobia/alumina support, the formation of the NiMoS phase can be directly linked to the presence of alumina not covered by niobia. However, niobia is an interesting support for the HDN of 2,6-DMA, because it favors the formation of xylene through direct ammonia elimination involving low H2 consumption. The activity for xylene formation on niobia is linked to the electron-deficient nature of the Mo sulfide site, as demonstrated by CO adsorption followed by IR.  相似文献   
8.
9.
In the last years, a variety of processes respectively process steps have been investigated for the production of niobium powder. This is due to the fact that niobium capacitors could be a viable alternative to tantalum capacitors from a performance, availability, and price point of view. The reduction of niobium pentoxide by magnesium results in fine powders with high specific surface area but has the disadvantages of a very exothermic nature and the formation of magnesium niobate. It is shown in this work that the application of a continuously operating cyclone reactor and the use of niobium(IV) oxide as raw material solve these problems. A good control of the highly exothermic reaction within the cyclone reactor was achieved in the cyclone reactor by the ratio between gas flow rate and powder flow rate as well as by a proper preheating of the gas.  相似文献   
10.
New biocompatible and biodegradable Mg–Nb composites used as bone implant materials are fabricated through powder metallurgy process. Mg–Nb mixture powders are prepared through mechanical milling and manual mixing. Then, the Mg–Nb composites are fabricated through cold press and sintering processes. The effect of mechanical milling and Nb particles as reinforcements on the microstructures and mechanical properties of Mg–Nb composites are investigated. The mechanical milling process is found to be effective in reducing the size of Mg and Nb particles, distributing the Nb particles uniformly in the Mg matrix and obtaining Mg–Nb composite particles. The Mg–Nb composite particles can be bound together firmly during the sintering process, result in Mg–Nb composite structures with no intermetallic formation, lower porosity, and higher mechanical properties compared to composites prepared through manual mixing. Interestingly, the mechanical properties of manually mixed Mg–Nb composites appear to be even lower than that of pure Mg.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号