首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6578篇
  免费   65篇
  国内免费   135篇
电工技术   85篇
综合类   99篇
化学工业   840篇
金属工艺   471篇
机械仪表   318篇
建筑科学   171篇
矿业工程   165篇
能源动力   622篇
轻工业   63篇
水利工程   49篇
石油天然气   91篇
武器工业   1篇
无线电   707篇
一般工业技术   2777篇
冶金工业   99篇
原子能技术   46篇
自动化技术   174篇
  2024年   1篇
  2023年   30篇
  2022年   66篇
  2021年   67篇
  2020年   73篇
  2019年   65篇
  2018年   65篇
  2017年   113篇
  2016年   129篇
  2015年   153篇
  2014年   216篇
  2013年   371篇
  2012年   438篇
  2011年   771篇
  2010年   528篇
  2009年   525篇
  2008年   448篇
  2007年   486篇
  2006年   381篇
  2005年   243篇
  2004年   223篇
  2003年   215篇
  2002年   203篇
  2001年   139篇
  2000年   123篇
  1999年   141篇
  1998年   138篇
  1997年   88篇
  1996年   69篇
  1995年   67篇
  1994年   52篇
  1993年   26篇
  1992年   28篇
  1991年   14篇
  1990年   15篇
  1989年   14篇
  1988年   10篇
  1987年   10篇
  1986年   9篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1980年   4篇
  1979年   4篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有6778条查询结果,搜索用时 15 毫秒
1.
In this study, dilute chemical bath deposition technique has been used to deposit CdZnS thin films on soda-lime glass substrates. The structural, morphological, optoelectronic properties of as-grown films have been investigated as a function of different Zn2+ precursor concentrations. The X-ray diffractogram of CdS thin-film reveals a peak corresponding to (002) plane with wurtzite structure, and the peak shift has been observed with the increase of the Zn2+ concentration upon formation of CdZnS thin film. From morphological studies, it has been revealed that the diluted chemical bath deposition technique provides homogeneous distribution of film on the substrate even at a lower concentration of Zn2+. Optical characterization has shown that the transparency of the film is influenced by Zn2+ concentration and when the Zn2+ concentration is varied from 0 M to 0.0256 M, bandgap values of resulting films range from 2.42 eV to 3.90 eV while. Furthermore, electrical properties have shown that with increasing zinc concentration the resistivity of the film increases. Finally, numerical simulation validates and suggests that CdZnS buffer layer with composition of 0.0032 M Zn2+ concentration would be a promising candidate in CIGS solar cell.  相似文献   
2.
《Ceramics International》2022,48(12):16923-16932
This paper offers a new way of testing the ablation property of material under an oxyacetylene torch using a thin-blade specimen, which costs much less time to reach the maximum temperature and provides a harsh turbulence fluid field that's closer to reality. The thin-blade specimen experiences a higher turbulent intensity than the traditional disk-like specimen, leading to more efficient heat exchange. The fluid field simulation agrees with the testing results. In addition, we manage to synthesize the C/Cx-SiCy composites with the co-deposition chemical vapor infiltration (CVI) method. The C/Cx-SiCy composites exhibit a similar anti-ablation property as C/C composites and consist of enough SiC phase simultaneously, combining the advantages of both C/C composites and C/SiC composites. The thin-blade C/Cx-SiCy composites show a lower linear ablation rate (1.6 μm/s) than C/C composites (4.1 μm/s) and C/SiC composites (19.6 μm/s) during the oxyacetylene test. The glass layer formed on the surface of C/Cx-SiCy could cling to the bulk material instead of peeling off due to the high PyC content in the matrix could protect the SiO2 from blowing away.  相似文献   
3.
《Ceramics International》2021,47(18):25574-25579
Vanadium dioxide (VO2) is known as a typical 3d-orbital transition metal oxide exhibiting the metal-to-insulator-transition (MIT) property near room temperature. However, their electronic applications have been challenged by the quality and uniformity of VO2 thin films. In this work, we demonstrate the high sensitivity in the valence charge of vanadium and the MIT properties of the VO2 thin films to the deposition temperature. This observation indicates the necessity to eliminate the inhomogeneity in the temperature distribution of substrate during the vacuum-deposition process of VO2. In addition, a high thermoelectric power factor (PF, e.g., exceeding 1 μWcm−1K−2) was achieved in the metallic phase of the VO2 thin films and this value is comparable to typical organic or oxide thermoelectric materials. We believe this high PF enriches the potential functionality in thermoelectric energy conversions beyond the existing electronic applications of the current vacuum-grown VO2 thin films.  相似文献   
4.
《Ceramics International》2022,48(4):5066-5074
We studied the morphological nature of various thin films such as silicon carbide (SiC), diamond (C), germanium (Ge), and gallium nitride (GaN) on silicon substrate Si(100) using the pulsed laser deposition (PLD) method and Monte Carlo simulation. We, for the first time, systematically employed the visibility algorithm graph to meticulously study the morphological features of various PLD grown thin films. These thin-film morphologies are investigated using random distribution, Gaussian distribution, patterned heights, etc. The nature of the interfacial height of individual surfaces is examined by a horizontal visibility graph (HVG). It demonstrates that the continuous interfacial height of the silicon carbide, diamond, germanium, and gallium nitride films are attributed to random distribution and Gaussian distribution in thin films. However, discrete peaks are obtained in the brush and step-like morphology of germanium thin films. Further, we have experimentally verified the morphological nature of simulated silicon carbide, diamond, germanium, and gallium nitride thin films were grown on Si(100) substrate by pulsed laser deposition (PLD) at elevated temperature. Various characterization techniques have been used to study the morphological, and electrical properties which confirmed the different nature of the deposited films on the Silicon substrate. Decent hysteresis behavior has been confirmed by current-voltage (IV) measurement in all the four deposited films. The highest current has been measured for GaN at ~60 nA and the lowest current in SiC at ~30 nA level which is quite low comparing with the expected signal level (μA). The HVG technique is suitable to understand surface features of thin films which are substantially advantageous for the energy devices, detectors, optoelectronic devices operating at high temperatures.  相似文献   
5.
In this study we analyze the optoelectronic properties and structural characterization of hydrogenated polymorphous silicon thin films as a function of the deposition parameters. The films were grown by plasma enhanced chemical vapor deposition (PECVD) using a gas mixture of argon (Ar), hydrogen (H2) and dichlorosilane (SiH2Cl2). High-resolution transmission electron microscopy images and Raman measurements confirmed the existence of very different internal structures (crystalline fractions from 12% to 54%) depending on the growth parameters. Variations of as much as one order of magnitude were observed in both the photoconductivity and effective absorption coefficient between the samples deposited with different dichlorosilane/hydrogen flow rate ratios. The optical and transport properties of these films depend strongly on their structural characteristics, in particular the average size and densities of silicon nanocrystals embedded in the amorphous silicon matrix. From these results we propose an intrinsic polymorphous silicon bandgap grading thin film to be applied in a p–i–n junction solar cell structure. The different parts of the solar cell structure were proposed based on the experimental optoelectronic properties of the pm-Si:H thin films studied in this work.  相似文献   
6.
Cadmium selenide films were synthesized using simple electrodeposition method on indium tin oxide coated glass substrates. The synthesized films were post annealed at 200 °C, 300 °C and 400 °C. X-ray diffraction of the films showed the hexagonal structure with crystallite size <3 nm for as deposited films and 3–25 nm for annealed films. The surface morphology of films using field emission scanning electron microscopy showed granular surface. The high resolution transmission electron microscopy of a crystallite of the film revealed lattice fringes which measured lattice spacing of 3.13 Å corresponding to (002) plane, indicating the lattice contraction effect, due to small size of CdSe nanocrystallite. The calculation of optical band gap using UV–visible absorption spectrum showed strong red-shift with increase in crystallite size, indicating to the charge confinement in CdSe nanocrystallite.  相似文献   
7.
Most researches on graphene/polymer composites are focusing on improving the mechanical and electrical properties of polymers at low graphene content instead of paying attention to constructing graphene’s macroscopic structures. In current study the homo-telechelic functionalized polyethylene glycols (FPEGs) were tailored with π-orbital-rich groups (namely phenyl, pyrene and di-pyrene) via esterification reactions, which enhanced the interaction between polyethylene glycol (PEG) molecules and chemical reduced graphene oxide (RGO) sheets. The π–π stacking interactions between graphene sheets and π-orbital-rich groups endowed the composite films with enhanced tensile strength and tunable electrical conductivity. The formation of graphene network structure mediated by the FPEGs fillers via π–π stacking non-covalent interactions should account for the experimental results. The experimental investigations were also complemented with theoretical calculation using a density functional theory. Atomic force microscope (AFM), scanning electron microscope (SEM), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), UV–vis and fluorescence spectroscopy were used to monitor the step-wise preparation of graphene composite films.  相似文献   
8.
《Ceramics International》2019,45(13):16405-16410
Copper Indium Gallium Selenide (Cu(In,Ga)Se2, CIGSe) absorbers with different Ga contents were prepared by sputtering CIGSe ceramic targets and post-annealing. CIGSe solar cell devices were fabricated with other functional layers. The device performances and absorber properties were investigated. Increasing Ga content led to an increase in VOC and a decrease in JSC. Ga was supposed to diffuse towards back contact during the annealing process. The best performance was obtained as the ratio of Ga/(In + Ga) reaches 0.32 with the efficiency of 13.8% and a VOC of 537 mV.  相似文献   
9.
Cadmium Sulfide and Ferrous doped Cadmium Sulfide thin films have been prepared on different substrates using an electrodeposition technique. Linear sweep voltammetric analysis has been carried out to determine deposition potential of the prepared films. X-ray diffraction analysis showed that the prepared films possess polycrystalline nature with hexagonal structure. Surface morphology and film composition have been analyzed using Scanning electron microscopy and Energy dispersive analysis by X-rays. Optical absorption analysis showed that the prepared films are found to exhibit Band gap value in the range between 2.3, 2.8 eV for Cadmium Sulfide and Ferrous doped Cadmium Sulfide.  相似文献   
10.
We are standing at the beginning of the industrialization of flexible thin-film transistor (TFT) backplanes. The two important research directions for the TFTs are (i) processability on flexible substrates and (ii) sufficient field-effect mobilities of electrons and holes to support complementary metal insulator semiconductor operation. The most important group of TFT capable semiconductors are the several modifications of silicon films: amorphous, nanocrystalline and microcrystalline. We summarize their TFT properties and their compatibility with foil substrate materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号