首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28081篇
  免费   1826篇
  国内免费   1213篇
电工技术   687篇
技术理论   7篇
综合类   1607篇
化学工业   3545篇
金属工艺   1292篇
机械仪表   901篇
建筑科学   3884篇
矿业工程   1824篇
能源动力   2503篇
轻工业   998篇
水利工程   4020篇
石油天然气   3517篇
武器工业   117篇
无线电   614篇
一般工业技术   2119篇
冶金工业   1849篇
原子能技术   369篇
自动化技术   1267篇
  2024年   60篇
  2023年   368篇
  2022年   729篇
  2021年   840篇
  2020年   798篇
  2019年   758篇
  2018年   677篇
  2017年   825篇
  2016年   862篇
  2015年   947篇
  2014年   1450篇
  2013年   1762篇
  2012年   1624篇
  2011年   2094篇
  2010年   1592篇
  2009年   1805篇
  2008年   1558篇
  2007年   1756篇
  2006年   1578篇
  2005年   1388篇
  2004年   1182篇
  2003年   1065篇
  2002年   866篇
  2001年   716篇
  2000年   625篇
  1999年   617篇
  1998年   459篇
  1997年   390篇
  1996年   335篇
  1995年   326篇
  1994年   241篇
  1993年   148篇
  1992年   170篇
  1991年   111篇
  1990年   83篇
  1989年   84篇
  1988年   44篇
  1987年   52篇
  1986年   34篇
  1985年   26篇
  1984年   18篇
  1983年   11篇
  1982年   16篇
  1981年   11篇
  1980年   13篇
  1979年   3篇
  1977年   1篇
  1975年   1篇
  1964年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Electrocatalytic water splitting is an important method to produce green and renewable hydrogen (H2). One of the hindrances for wide applications of electrocatalysis in H2 production is the lack of freshwater resources. Comparatively, seawater splitting has become an effective approach for large-scale H2 production due to its abundant reserves. However, the increased complexity of seawater content emerged more problems in electrocatalytic seawater splitting. Recently, various strategies have been reported on improving the performance of electrocatalysts applied in seawater. Herein, this review firstly analyzed the mechanisms and challenges of electrocatalytic seawater splitting to evolve H2, and summarized the recent progress on H2 production in electrocatalytic seawater splitting. Furthermore, suggestions for future work have been provided for guidance.  相似文献   
2.
‘Renewable energy is an essential part of our strategy of decarbonization, decentralization, as well as digitalization of energy.’ – Isabelle Kocher.Current climate, health and economic condition of our globe demands the use of renewable energy and the development of novel materials for the efficient generation, storage and transportation of renewable energy. Hydrogen has been recognised as one of the most prominent carriers and green energy source with challenging storage, enabling decarbonization. Photocatalytic H2 (green hydrogen) production processes are targeting the intensification of separated solar energy harvesting, storage and electrolysis, conventionally yielding O2/H2. While catalysis is being investigated extensively, little is done on bridging the gap, related to reactor unit design, optimisation and scaling, be it that of material or of operation. Herein, metals, oxides, perovskites, nitrides, carbides, sulphides, phosphides, 2D structures and heterojunctions are compared in terms of parameters, allowing for efficiency, thermodynamics or kinetics structure–activity relationships, such as the solar-to-hydrogen (STH). Moreover, prominent pilot systems are presented summarily.  相似文献   
3.
Proper management of the liquid water and heat produced in proton exchange membrane (PEM) fuel cells remains crucial to increase both its performance and durability. In this study, a two-phase flow and multicomponent model, called two-fluid model, is developed in the commercial COMSOL Multiphysics® software to investigate the liquid water heterogeneities in large area PEM fuel cells, considering the real flow fields in the bipolar plate. A macroscopic pseudo-3D multi-layers approach has been chosen and generalized Darcy's relation is used both in the membrane-electrode assembly (MEA) and in the channel. The model considers two-phase flow and gas convection and diffusion coupled with electrochemistry and water transport through the membrane. The numerical results are compared to one-fluid model results and liquid water measurements obtained by neutron imaging for several operating conditions. Finally, according to the good agreement between the two-fluid and experimentation results, the numerical water distribution is examined in each component of the cell, exhibiting very heterogeneous water thickness over the cell surface.  相似文献   
4.
Relatively low efficiency is the biggest obstacle to the popularization of water electrolysis, which is a particularly feasible way to produce super-pure hydrogen. Imposing a magnetic field can increase the hydrogen production efficiency of water electrolysis. However, the enhancement's detailed mechanism still lacks an insightful understanding of the bubbles' micro vicinity. Our recent work aims to understand why the micro-magnetohydrodynamic (MHD) convection hinders single bubbles' detachment on the microelectrode. A water electrolysis experiment by microelectrode is performed under an electrode-normal magnetic field, and dynamic analysis of the single bubble growing on microelectrodes is performed. The variation of bubble diameter with time in the presence or absence of the magnetic field was measured, and the forces acting on the bubble were quantified. The result shows that the micro-MHD convection, induced by Lorentz force, can give rise to a downward hydrodynamic pressure force that will not appear in large-scale MHD convection. This force can be of the same magnitude as the surface tension, so it dramatically hinders bubbles' detachment. Besides, the Kelvin force provides a new potential way for further improving the efficiency of water electrolysis.  相似文献   
5.
Utilization of 3D nanostructured Pt cathodes could obviously improve performances of proton exchange membrane fuel cells (PEMFCs) owing to the reduced tortuosity and the bi-continuous nanoporous structure. However, these cathodes usually suffer from the flooding problem ascribed to the ionomer-free and nanoscale pores which are more susceptible to water condensation. In this paper, ultra-thin nanoporous metal films (100 nm) were utilized to construct PEMFC cathodes and independent transport channels were designed separately for water and gas aiming at the flooding problem. Nanoporous gold (NPG) film was used as the model support for loading Pt nanoparticles owing to its controllable and stable structure. After optimizing the polytetrafluoroethylene (PTFE) content and carbon loading in the gas diffusion layer (GDL), plasma treatment under O2 atmosphere was used to pattern the GDL with independent water transport channels. The obtained liquid permeation coefficients and oxygen gains demonstrated the obviously improved water and O2 transport. By using a home-made optimized GDL and a nanoporous film cathode with pore size ~60 nm, the flooding problem could be facilely solved. With a Pt loading of ~16 μg cm?2, this 3D nanostructured cathode exhibits a PEMFC performance of ~957 mW cm?2 at 80 °C. The Pt power efficiency is about 4 times higher than that of the commercial Pt/C cathode (50 μg cm?2, 756 mW cm?2). Obviously, this study provides a simple but effective methodology to solve the water flooding problem in the ultra-thin nanoporous film cathodes which is applicable for other types of 3D nanostructured PEMFC cathodes.  相似文献   
6.
《Ceramics International》2021,47(21):29681-29687
Inorganic piezoelectric ceramic composite is the potential sensing element for long-term structural health monitoring due to its excellent durability and compatibility. In this study, a Ceramicrete-based piezoelectric composite is proposed preliminarily, in which the magnesium potassium phosphate cement is used as the matrix and the lead zirconate titanate particle is utilized as the functional phase. Piezoelectric properties test and microstructure analysis are performed to evaluate the testing samples. Results show that the piezoelectric performance of the composite increase with the increase of piezoelectric ceramic particle size. The value of the piezoelectric strain factor (d33) can reach 83.8 pC/N, while the corresponding piezoelectric voltage factor (g33) is 50.1 × 10-3 V•m/N at the 50th day after polarization. Microstructure analysis illustrates that the interfacial transition zone (ITZ) between the matrix and the particles is dense. Moreover, the influence of aging on the composite is attributed to the continuous hydration after polarization. It indicates that the composites have a higher piezoelectric performance, which can be regarded as a promising sensing element material.  相似文献   
7.
为了解破碎围岩分别采用锚杆支护、锚喷支护以及锚喷+锚索耦合三种支护方式下的支护效果,进而为破碎围岩巷道选择合理的支护方式提供参考。通过借助FLAC3D软件建立数值模型,分析不同支护条件下的破碎围岩巷道位移量、应力分布以及塑性区的时空演化特征。结果表明,采用锚喷+锚索耦合支护时,可以较好的控制巷道围岩的位移量、减小应力集中效应、缩小塑性区的影响范围。  相似文献   
8.
Three-dimensional Bödewadt flow (fluid rotates at a large enough distance from the stationary plate) of carbon nanomaterial is examined. Single walled and multi walled CNTs are dissolved in water and gasoline oil baseliquids. Darcy-Forchheimer porous medium is considered. Stationary disk is further stretched linearly in radial direction. Heat transfer effect is examined in presence of radiation and convection. Effect of viscous dissipation is accounted. Entropy generation rate is studied. By using adequate transformation (von Kármán relations), the flow field equations (PDEs) are transmitted into ODEs. Solutions to these ODEs are constructed via implementation of shooting method (bvp4c). In addition to Entropy generation rate, Bejan number, heat transfer rate (Nusselt number), skin friction and temperature of fluid are examined through involved physical parameters. Axial component of velocity intensifies with increment in nanoparticles volume fraction and ratio of stretching rate to angular velocity parameter while it decays with higher porosity parameter. Higher nanoparticles volume fraction and porosity parameter lead to decay in radial as well as tangential component of velocity. However it enhances with higher ratio of stretching rate to angular velocity parameter. Temperature of fluid directly varies with higher ratio of stretching rate to angular velocity parameter, radiation parameter, Eckert number, Biot number and nanoparticles volume fraction. Rate of Entropy generation is reduced with higher estimations of porosity parameter, nanoparticles volume fraction and radiation parameter. Skin friction coefficient decays with higher porosity parameter and ratio of stretching rate to angular velocity parameter. Intensification in porosity parameter, nanoparticles volume fraction and Biot number leads to higher Nusselt number. Prominent impact is shown by multiple-walled CNTs with gasoline oil basefluid than single-walled CNTs with water basefluid.  相似文献   
9.
Upper Barremian – Lower Aptian inner platform “Urgonian” limestones in the Mont de Vaucluse region, SE France, consist of alternating metre-scale microporous and tight intervals. This paper focuses on the influence of structural deformation on the reservoir properties of the Urgonian limestone succession in a study area near the town of Rustrel. Petrographic, petrophysical and structural data were recovered from five fully-cored boreholes, from the walls of a 100 m long underground tunnel, and from a 50 m long transect at a nearby outcrop. The data allowed reservoir property variations in the Urgonian limestones to be studied from core to reservoir scale. Eleven Reservoir Rock Types (RRTs) were identified based on petrographic features (texture, grain size), reservoir properties (porosity, permeability), and the frequency of structural discontinuities such as fractures, faults and stylolites. Tight and microporous reservoir rock types were distinguished. Tight reservoir rock types were characterised by early cementation of intergranular pore spaces and by the presence of frequent structural discontinuities. By contrast microporous reservoir rock types contained preserved intragranular microporosity and matrix permeability, but had very few structural discontinuities. Observed vertical alternations of microporous and tight rock types are interpreted to have been controlled by the early diagenesis of the Urgonian carbonates. Deformation associated with regional-scale tectonic phases, including Albian – Cenomanian “Durancian” uplift (∼105 to 96 Ma) and Pyrenean compression (∼55 to 25 Ma), resulted in the modification of the initial petrophysical properties of the Urgonian limestones. An early diagenetic imprint conditioned both the intensity of structural deformations and the associated circulations of diagenetic and meteoric fluids. Evolution of the Reservoir Rock Types is therefore linked both to the depositional conditions and to subsequent phases of structural deformation.  相似文献   
10.
Fault detection and isolation in water distribution networks is an active topic due to the nonlinearities of flow propagation and recent increases in data availability due to sensor deployment. Here, we propose an efficient two-step data driven alternative: first, we perform sensor placement taking the network topology into account; second, we use incoming sensor data to build a network model through online dictionary learning. Online learning is fast and allows tackling large networks as it processes small batches of signals at a time. This brings the benefit of continuous integration of new data into the existing network model, either in the beginning for training or in production when new data samples are gathered. The proposed algorithms show good performance in our simulations on both small and large-scale networks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号