排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
In this study, the accuracy of a machine tool was evaluated by modeling the spherical deviation based on double ball-bar measurements under unloaded conditions. Circular measurement paths on the XY-, YZ-, and ZX-planes were planned, and three linear axis drives were commanded to follow the paths describing a nominal sphere. The spherical deviation, defined as the maximum radial range of deviations around a least-squares sphere, is affected by the accuracies of the three linear axes together. Therefore, the spherical deviation represents the accuracy of machine tools by quantifying the effect of the accuracies of three linear axes, whereas the circular deviation only quantifies the accuracies of two linear axes among the three linear axes. In this experimental study, spherical deviations of vertical/horizontal machine tools were measured and analyzed under various nominal lengths of a double ball-bar for various feed rates. The measurement uncertainty of the measured spherical deviation was investigated to determine the confidence interval. 相似文献
2.
3.
以AOCMT型五轴超精密加工机床为例,运用球杆仪对其旋转轴C轴进行测量,测量时采用机床两个平动轴和一个旋转轴同时运动,测量方式分轴向,径向,切向三种。以多体系统运动学理论为基础,运用齐次坐标变换矩阵建立机床旋转轴几何误差模型,并提出一种误差辨识方法。该方法利用误差模型推导出各项误差与球杆仪轨迹偏心率关系的数学表达式,设计进行不同位置,不同高度的测量,以此可以将与位置点无关的静态误差和与位置点相关的动态误差同时分离出来,准确高效。 相似文献
4.
采用先进的检测球杆仪技术,应用QC20W型球杆仪检测XK714型数控铣床的误差并分析影响该机床精度的主要因素,对影响精度最大的X轴和Y轴的反向间隙进行间隙补偿,提高了数控铣床的加工精度,为从事调整和提高数控机床精度的操作者提供了经验和实践操作指南。 相似文献
5.
6.
7.
几何误差是五轴数控机床重要误差源,针对传统测量方法仪器昂贵、测量周期长问题,提出基于球杆仪的五轴数控机床几何误差快速检测方法。对于机床的平动轴误差,利用多体系统理论及齐次坐标变换法,建立平动轴空间误差模型,通过球杆仪在同一平面不同位置进行两次圆轨迹,辨识出4项平动轴关键线性误差;针对五轴机床的转台和摆动轴,设计基于球杆仪的多条空间测试轨迹,完整求解出旋转轴12项几何误差。实验结果显示,所提方法获得转角定位误差与激光干涉仪法最大误差为0.001 8°,利用检测结果进行机床空间误差补偿,测试轨迹偏差由16μm降至4μm,为补偿前的25%,验证了方法的有效性。提出的五轴机床几何误差检测方法方便、便捷,适用于工业现场。 相似文献
8.
9.
In this study, position-independent geometric errors, including offset errors and squareness errors of rotary axes of a five-axis machine tool are measured using a double ball-bar and are verified through compensation. In addition, standard uncertainties of measurement results are calculated to establish their confidence intervals. This requires two measurement paths for each rotary axis, which are involving control of single rotary axis during measurement. So, the measurement paths simplify the measurement process, and reduce measurement cost including less operator effort and measurement time. Set-up errors, which are inevitable during the installation of the balls, are modeled as constants. Their effects on the measurement results are investigated to improve the accuracy of the measurement result. A novel fixture consisting of flexure hinges and two pairs of bolts is used to minimize set-up error by adjusting the ball's position located at the tool nose. Simulation is performed to check the validation of measurement and to analyze the standard uncertainties of the measurement results. Finally, the position-independent geometric errors of the five-axis machine tool (involving a rotary axis and a trunnion axis) are measured using proposed method. 相似文献
10.
多轴联动高速加工中,运动参数引起的机床动态误差是产生零件加工误差的重要因素。针对EtherCAT总线型数控机床,以球杆仪QC20-W和工业以太网探头工具ET2000为测量工具,建立了机床动态误差和静态误差模型。首先基于齐次坐标变换理论建立球杆仪杆长变化量与机床动、静态误差的数学关系;然后根据这两类误差的不同特性,构建了以坐标位置表达的静态误差多项式及以速度、加速度的角频率及相位表达的动态误差低阶正弦多项式。并采用小波变换针对位置信息中的噪声进行降噪处理。最后采用最小二乘理论求解误差表达式中的未知系数。结果表明,指令速度为动态误差的主要因素,加速度为次要因素。在加速度不变,指令速度由20 mm/s依次上升至40、80 mm/s时,动态误差占总误差的比例由2.13%增加到11.74%、49.15%;指令速度不变,加速度由200 mm/s2上升至800 mm/s2时,动态误差占比由22.72%上升至26.83%。 相似文献
1