首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36351篇
  免费   2318篇
  国内免费   2243篇
电工技术   669篇
技术理论   1篇
综合类   1499篇
化学工业   9201篇
金属工艺   8553篇
机械仪表   1525篇
建筑科学   1205篇
矿业工程   411篇
能源动力   1421篇
轻工业   1525篇
水利工程   411篇
石油天然气   1057篇
武器工业   256篇
无线电   2760篇
一般工业技术   8485篇
冶金工业   1251篇
原子能技术   432篇
自动化技术   250篇
  2024年   147篇
  2023年   708篇
  2022年   940篇
  2021年   1128篇
  2020年   1104篇
  2019年   1085篇
  2018年   1039篇
  2017年   1321篇
  2016年   1155篇
  2015年   1167篇
  2014年   1709篇
  2013年   1980篇
  2012年   2338篇
  2011年   2903篇
  2010年   2284篇
  2009年   2243篇
  2008年   1907篇
  2007年   2254篇
  2006年   2275篇
  2005年   1826篇
  2004年   1616篇
  2003年   1380篇
  2002年   1163篇
  2001年   897篇
  2000年   830篇
  1999年   614篇
  1998年   582篇
  1997年   441篇
  1996年   415篇
  1995年   374篇
  1994年   265篇
  1993年   207篇
  1992年   176篇
  1991年   116篇
  1990年   90篇
  1989年   78篇
  1988年   36篇
  1987年   18篇
  1986年   29篇
  1985年   16篇
  1984年   7篇
  1983年   17篇
  1982年   8篇
  1981年   6篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1974年   2篇
  1959年   3篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
The introduction of catalyst on anode of solid oxide fuel cell (SOFC) has been an effective way to alleviate the carbon deposition when utilizing biogas as the fuel. A series of La0.6Sr0.4Co1-xNixO3-δ (x = 0, 0.2, 0.4, 0.6, 0.8) oxides are synthesized by sol-gel method and used as catalysts precursors for biogas dry reforming. The phase structure of La0.6Sr0.4Co1-xNixO3-δ oxides before and after reduction are characterized by X-ray diffraction (XRD). The texture properties, carbon deposition, CH4 and CO2 conversion rate of La0.6Sr0.4Co1-xNixO3-δ catalysts are evaluated and compared. The peak power density of 739 mW cm?2 is obtained by a commercial SOFC with La0.6Sr0.4Co0.4Ni0.6O3-δ catalyst at 850 °C when using a mixture of CH4: CO2 = 2:1 as fuel. This shows a great improvement from the cell without catalyst for internal dry reforming, which is attributed to the formation of NiCo alloy active species after reduction in H2 atmosphere. The results indicate the benefits of inhibiting the carbon deposition on Ni-based anode through introducing the La0.6Sr0.4Co0.4Ni0.6O3-δ catalyst precursor. Additionally, the dry reforming technology will also help to convert part of the exhaust heat into chemical energy and improve the efficiency of SOFC system with biogas fuel.  相似文献   
3.
In this study, dilute chemical bath deposition technique has been used to deposit CdZnS thin films on soda-lime glass substrates. The structural, morphological, optoelectronic properties of as-grown films have been investigated as a function of different Zn2+ precursor concentrations. The X-ray diffractogram of CdS thin-film reveals a peak corresponding to (002) plane with wurtzite structure, and the peak shift has been observed with the increase of the Zn2+ concentration upon formation of CdZnS thin film. From morphological studies, it has been revealed that the diluted chemical bath deposition technique provides homogeneous distribution of film on the substrate even at a lower concentration of Zn2+. Optical characterization has shown that the transparency of the film is influenced by Zn2+ concentration and when the Zn2+ concentration is varied from 0 M to 0.0256 M, bandgap values of resulting films range from 2.42 eV to 3.90 eV while. Furthermore, electrical properties have shown that with increasing zinc concentration the resistivity of the film increases. Finally, numerical simulation validates and suggests that CdZnS buffer layer with composition of 0.0032 M Zn2+ concentration would be a promising candidate in CIGS solar cell.  相似文献   
4.
《Ceramics International》2021,47(22):31590-31596
In this study, the high ferroelectric hysteresis loss of (Pb0·93La0.07)(Zr0·82Ti0.18)O3 (PLZT 7/82/18) antiferroelectric (AFE) ceramics was reduced by employing a combinatorial approach of Mn acceptor doping followed by thick film fabrication via an aerosol deposition (AD) process. The grains of the as-deposited PLZT 7/82/18 AFE AD thick films were grown by thermal annealing at 550 °C to enhance their electrical properties. Investigation of the electrical properties revealed that Mn-doping results in improved dielectric and ferroelectric properties, increased dielectric breakdown strength (DBS), and energy-storage properties. The Mn-doped PLZT AFE AD films possess a frequency-independent high dielectric constant (εr ≈ 660) with low dielectric loss (tan δ ≈ 0.0146), making them suitable candidates for storage capacitor applications. The bipolar and unipolar polarization vs. electric field (P-E) hysteresis loops of PLZT 7/82/18 AFE AD thick films were found to be slimmer than those of their bulk form (double hysteresis) with significantly reduced ferroelectric hysteresis loss, which is attributed to the AD-induced mixed grain structure. The Mn-doped PLZT 7/82/18 AFE AD thick films exhibited a low remnant polarization (Pr ≈ 9.22 μC/cm2) at a high applied electric field (~2750 kV/cm). The energy-storage density and energy efficiency of the Mn-doped PLZT AFE AD thick films were calculated from unipolar P-E hysteresis loops and found to be ~38.33 J/cm3 and ~74%, respectively.  相似文献   
5.
Developing the thermal stability of metal-based ceramic composites or their films has always been challenging and bottlenecks for the utilization of energy. In this paper, the novel mesh-like functional Al doped-MoO3 nanocomposite film with even distribution and high purity was firstly fabricated by the high-efficiency electrophoretic deposition and surface modification. The optimal suspension turned out to be the mixture of isopropanol and the additives of polyethyleneimine and benzoic acid. The microtopography, crystalline structure, environmental resistance and thermal stability were analyzed by field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX), X-ray diffractometer (XRD), exposure and droplet-impacting test, DSC analysis and ignition test, respectively. The water contact angle and sliding angle of product can reach ~170° and <1°, indicating the excellent anti-wetting property. In addition, the high heat-release (~3180 J/g) of product all kept almost unchangeable after six months exposure experiments, demonstrating the outstanding thermostability. The exquisite design idea here can perfectly match microelectromechanical system (MEMS), providing the valuable reference for fabricating other metal-based high-energy composites with long lifespan for real industrial applications.  相似文献   
6.
《Ceramics International》2021,47(23):32969-32978
In this study, hydroxyapatite-based hydroxyapatite-wollastonite-boron nitride (HAp-Wo-BN) composite film was formed on the surface of Ti6Al4V by pulsed laser deposition (PLD). Based on a survey in scientific literature, it is presumed that this is the first time such a process is being undertaken. The wear and corrosion resistance of this film were analyzed comparatively in simulated body fluid (SBF) to simulate the human body environment. In the coating, HAp was used to form a bone-like layer, wollastonite was to enhance bone-tissue regeneration and BN was used for its bone-tissue healing and anti-bacterial properties. The results showed that the wear as well as the corrosion resistance of all samples after PLD treatment increased. Relatively the best wear resistance was achieved from boron nitride and wollastonite doped hydroxyapatite layers, where the best corrosion resistance was from the ones that consisted of only hydroxyapatite.  相似文献   
7.
Mass transfer in polycrystalline Yb2SiO5 wafers with precise composition control was evaluated and analyzed by oxygen permeation experiments at high temperatures using an oxygen tracer. Oxygen permeation proceeded due to mutual grain boundary diffusion of oxide ions and Yb ions without synergistic effects such as acceleration or suppression. The oxygen shielding properties of Yb2SiO5 were compared with those of the other line compounds such as Yb2Si2O7 and Al2O3 based on the determined mass transfer parameters. It was found that the more preferentially an oxide ion diffuses in the grain boundary compared to the interior of the grain, the greater the effect of suppressing the movement of the oxide ion by applying an oxygen potential gradient becomes.  相似文献   
8.
A silica-based glass-ceramic, with Y2Ti2O7 as the major crystalline phase, is designed, characterised and tested as an oxidation-protective coating for a titanium suboxide (TiOx) thermoelectric material at temperatures of up to 600 °C. The optimised sinter-crystallisation treatment temperatures are found to be 1300 °C and 855 °C for a duration of 30 min, and this treatment leads to a glass-ceramic with cubic Y2Ti2O7 and CaAl2Si2O8 as crystalline phases. An increase of ~270 °C in the dilatometric softening temperature is observed after devitrification of the parent glass, thus further extending its working temperature range.Excellent adhesion of the glass-ceramic coating to the thermoelectric material is maintained after exposure to a temperature of 600 °C for 120 h under oxidising conditions, thus confirming the effectiveness of the T1 glass-ceramic in protecting the TiOx material.  相似文献   
9.
In an attempt to optimize the properties of FeCoNi coating for planar solid oxide fuel cell (SOFC) interconnect application, the coating composition is modified by increasing the ratio of Fe/Ni. An Fe1·5CoNi0.5 (Fe:Co:Ni = 1.5:1:0.5, atomic ratio) metallic coating is fabricated on SUS 430 stainless steel by magnetron sputtering, followed by oxidation in air at 800°C. The Fe1·5CoNi0.5 coating is thermally converted to (Fe,Co,Ni)3O4 and (Fe,Co,Mn,Ni)3O4 without (Ni,Co)O particles. After oxidation for 1680 h, no further migration of Cr is detected in the thermally converted coating region. A low oxidation rate of 5.9 × 10?14 g2 cm?4 s?1 and area specific resistance of 12.64 mΩ·cm2 is obtained for Fe1·5CoNi0.5 coated steels.  相似文献   
10.
In this present work, the effect of lanthanum oxides (La2O3) on the thermal cycle behavior of TBC coatings and mechanical properties such as adhesion strength and microhardness of 8% Yttria Stabilized Zirconia (8YSZ) TBCs were investigated. CoNiCrAlY and aluminium alloy (Al–13%Si) were used as bond coat and substrate materials. 8YSZ and different wt % of La2O3 (10, 20, and 30%) top coatings were applied using the atmospheric plasma spray (APS) method. The thermal cycling test for TBC coated samples were conducted at 800 °C in the electric furnace. The XRD pattern shows that the La2O3 doped 8YSZ material transformed to cubic pyrochloric structured La2Zr2O7 during thermal cycling. Further, the Taguchi-based grey relation analysis (GRA) method was applied to optimize the TBC coating parameters to achieve better mechanical properties such as adhesion strength and microhardness. And the optimized La2O3/8YSZ TBC coating was coated on CRDI engine combustion chamber components. The engine was tested with microalgae biodiesel and hydrogen, and the results were promising for the TBC-coated engine. The engine performance increased while using La2O3/8YSZ coated components, and the emissions from engine exhaust gas such as CO, HC, and smoke reduced considerably. It was found that there was no separation crack and spallation of the coating layer in the microstructure. Ultimately, the microstructural analysis of the optimized TBC coated piston sample after 50 h of running in the diesel engine confirmed that the developed coating had a superior thermal insulation effect and longer life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号