首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16102篇
  免费   1493篇
  国内免费   671篇
电工技术   245篇
综合类   933篇
化学工业   3974篇
金属工艺   1497篇
机械仪表   482篇
建筑科学   918篇
矿业工程   852篇
能源动力   439篇
轻工业   1156篇
水利工程   378篇
石油天然气   2630篇
武器工业   58篇
无线电   456篇
一般工业技术   1760篇
冶金工业   1662篇
原子能技术   583篇
自动化技术   243篇
  2024年   61篇
  2023年   311篇
  2022年   458篇
  2021年   592篇
  2020年   625篇
  2019年   525篇
  2018年   469篇
  2017年   508篇
  2016年   588篇
  2015年   555篇
  2014年   903篇
  2013年   1243篇
  2012年   1269篇
  2011年   1241篇
  2010年   851篇
  2009年   820篇
  2008年   696篇
  2007年   878篇
  2006年   836篇
  2005年   722篇
  2004年   609篇
  2003年   535篇
  2002年   516篇
  2001年   377篇
  2000年   360篇
  1999年   318篇
  1998年   252篇
  1997年   183篇
  1996年   188篇
  1995年   152篇
  1994年   105篇
  1993年   82篇
  1992年   84篇
  1991年   78篇
  1990年   60篇
  1989年   39篇
  1988年   12篇
  1987年   26篇
  1986年   20篇
  1985年   35篇
  1984年   29篇
  1983年   18篇
  1982年   10篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1976年   2篇
  1975年   7篇
  1959年   2篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Carbon dioxide (CO2) and methane (CH4) are the primary greenhouse gases (GHGs) that drive global climate change. CO2 reforming of CH4 or dry reforming of CH4 (DRM) is used for the simultaneous conversion of CO2 and CH4 into syngas and higher hydrocarbons. In this study, DRM was investigated using Ag–Ni/Al2O3 packing and Sn–Ni/Al2O3 packing in a parallel plate dielectric barrier discharge (DBD) reactor. The performance of the DBD reactor was significantly enhanced when applying Ag–Ni/Al2O3 and Sn–Ni/Al2O3 due to the relatively high electrical conductivity of Ag and Sn as well as their anti-coke performances. Using Ag–Ni/Al2O3 consisting of 1.5 wt% Ag and 5 wt% Ni/Al2O3 as the catalyst in the DBD reactor, 19% CH4 conversion, 21% CO2 conversion, 60% H2 selectivity, 81% CO selectivity, energy efficiency of 7.9% and 0.74% (by mole) coke formation were achieved. In addition, using Sn–Ni/Al2O3, consisting of 0.5 wt% Sn and 5 wt% Ni/Al2O3, 15% CH4 conversion, 19% CO2 conversion, 64% H2 selectivity, 70% CO selectivity, energy efficiency of 6.0%, and 2.1% (by mole) coke formation were achieved. Sn enhanced the reactant conversions and energy efficiency, and resulted in a reduction in coke formation; these results are comparable to that achieved when using the noble metal Ag. The decrease in the formation of coke could be correlated to the increase in the CO selectivity of the catalyst. Good dispersion of the secondary metals on Ni was found to be an important factor for the observed increases in the catalyst surface area and catalytic activities. Furthermore, the stability of the catalytic reactions was investigated for 1800 min over the 0.5 wt% Ag-5 wt% Ni/Al2O3 and 0.5 wt% Sn-5 wt% Ni/Al2O3 catalysts. The results showed an increase in the reactant conversions with an increase in the reaction time.  相似文献   
2.
An electrolyte Equation of State is presented by combining the Cubic Plus Association Equation of State,Mean Spherical Approximation and the Born equation.This new model uses experimental relative static permittivity,intend to predict well the activity coefficients of individual ions (ACI) and liquid densities of aqueous solutions.This new model is applied to model water + NaCl binary system and water + gas +NaCl ternary systems.The cation/anion-water interaction parameters of are obtained by fitting the exper-imental data of ACI,mean ionic activity coefficients (MIAC) and liquid densities of water + NaCl binary system.The cation/anion-gas interaction parameters are obtained by fitting the experimental data of gas solubilities in aqueous NaCl solutions.The modeling results show that this new model can correlate well with the phase equilibrium and volumetric properties.Without gas,predictions for ACI,MIAC,and liquid densities present relative average deviations of 1.3%,3.6% and 1.4% compared to experimental ref-erence values.For most gas-containing systems,predictions for gas solubilities present relative average deviations lower than 7.0%.Further,the contributions of ACI,and salting effects of NaCl on gases are ana-lyzed and discussed.  相似文献   
3.
In recent years, alternative renewable energy generation sources have been investigated, highlighting the dark fermentation process due to it’s potential to obtain hydrogen-rich gas, which can be used as an energy source. Different trace metals intervene in this biological process. Nickel is one of the most important because it is a component of the [Ni–Fe] hydrogenase enzyme that catalyzes the oxidation of H2 in numerous bacteria. The aim of this study was to evaluate the effect of nickel on biohydrogen production from organic solid waste (OSW). The experimental setup was carried out in batch tests using OSW as the substrate, glucose as a reference compound and the valuation of Ni2+ doses on the operation in a Sequencing Batch Reactor. The results of the batch tests showed that when using glucose as a substrate, 2 mg Ni2+/g VSinoculum generated the highest hydrogen production (774 ± 7.3 mL H2/L/d) and highest yield (55.8 ± 3.4 mL H2/g of glucose), which was 34.4% higher than the control. Testing of different concentrations of nickel using OSW as a carbon source showed that the highest production was obtained without Ni2+ addition since the nickel concentration in the residue was 0.17 ± 0.06 mgNi/gVS; consequently, hydrogen production was not affected by the lack of Ni. The addition of 0.5 mg Ni2+/g VSinoculum decreased acetate and butyrate production and increased caproate production.  相似文献   
4.
5.
The aim of this paper is to investigate the long and short-run relationship between spot and futures prices of the energy, precious metals, and base metals markets. We analyze daily data from January 1985 to February 2019. The empirical findings based on the cointegration test, which follows a nonlinear process, suggest that the spot prices of energy and metals assets have long-run relationships with their futures prices. Nonparametric Granger causality test results also indicate bi-directional causality among futures and spot prices. These findings indicate that the energy and metals markets are informationally efficient in the sense of Fama (1970).  相似文献   
6.
《Ceramics International》2021,47(23):33280-33285
This study investigated carbon nanotube filtration technology using catalyst particles supported on silicalite-1–biomorphic carbon materials (BCMs). Aqueous solutions of Mn(II), Cu(II), Cr(III), Cd(II), and Pb(II) were used to test the efficiency of heavy metal ions removal. Carbon nanotubes (CNTs) were synthesized and grown on BCMs by the chemical vapor deposition method catalyzed with the catalyst (Co, Fe, and Ni). The synthesized CNTs with Co– and Fe– nanoparticles were typically multi-walled carbon nanotubes, and they showed good crystallinity (ID/IG = 1.05) and yield of (11.10 and 8.86) %. The removal efficiency of Mn(II), Cu(II), Cr(III), Cd(II), and Pb(II) ions using Co-catalyzed CNT filter was 97.57%, 98.01%, 97.89%, 97.42%, and 99.99%, respectively.  相似文献   
7.
Atom scattering is becoming recognized as a sensitive probe of the electron–phonon interaction parameter λ at metal and metal-overlayer surfaces. Here, the theory is developed, linking λ to the thermal attenuation of atom scattering spectra (in particular, the Debye–Waller factor), to conducting materials of different dimensions, from quasi-1D systems such as W(110):H(1 × 1) and Bi(114), to quasi-2D layered chalcogenides, and high-dimensional surfaces such as quasicrystalline 2ML-Ba(0001)/Cu(001) and d-AlNiCo(00001). Values of λ obtained using He atoms compare favorably with known values for the bulk materials. The corresponding analysis indicates in addition, the number of layers contributing to the electron–phonon interaction, which is measured in an atom surface collision.  相似文献   
8.
Rare-earth ions doped Ca0.9R0.1CeNbMoO8 (R = Y, Sm, Nd, La) ceramics have been successfully prepared by solid-state method, and their modifications to the microstructure and electrical properties are also investigated. The rare-earth ions doped ceramics exhibit the scheelite structure. With the increase in the radius of rare-earth ions, the lattice distortion and bond interaction will be enhanced, and the consistency of grain size will be reduced. The ceramics exhibit negative temperature coefficient (NTC) thermistor characteristics in the temperature range of 473 K-1273 K, and the activation energy decreases with the increase of the radius of rare-earth ions. Rare-earth ions doping can increase the content of Ce3+ ions and promote the conductivity of ceramics. Except for Sm3+-doped ceramics, the high-temperature aging rate of other ceramics is less than 2%. The existence of some metastable Sm2+ ions in Sm3+-doped ceramics not only increases the activation energy, but also reduces the high-temperature stability of the ceramics.  相似文献   
9.
Upconversion phosphors are known as a material system that can convert near-infrared light into visible/ultraviolet emissions by sequentially absorbing multiple photons. The studies on upconversion materials often use two rare earth (RE) ions as a sensitizer-activator pair. We investigated the influences on luminescence intensity depending on Cr-doping content (x) of hexagonal NaLu0.98–xCrxF4Er0.02 (x = 0–0.9) upconversion material by substituting Lu3+ ions with Cr3+in the absence of Gd3+. The change in upconversion luminescence intensity appears with saddle-like shape. We suggest that Cr3+ ions play the dual role as a constituent in host lattice and a sensitizer in the upconversion process. Optimal conditions for gaining the strongest upconversion emission correspond to x = 0.3–0.5, where there are effective energy transfers between Cr3+ and Er3+ ions and CrEr dimers. Apart from these values, the emission intensity decreases rapidly which can be ascribed to the absence of multiple-photon absorption for the case of low Cr3+ contents, and to the coupling between Cr3+ and/or Er3+ ions for the case of high Cr3+ contents. Magnetization and electron-spin-resonant measurements were performed to understand the correlation between the optical and magnetic properties.  相似文献   
10.
《云南化工》2019,(9):101-102
分析当前较为常用的岩矿稀有元素分析技术方法,并对几种常见的稀有元素分析方法进行了阐述,希望为我国矿产勘探领域提供一些有价值的参考借鉴。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号