首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45162篇
  免费   3377篇
  国内免费   2455篇
电工技术   2089篇
技术理论   1篇
综合类   3266篇
化学工业   9633篇
金属工艺   3238篇
机械仪表   2567篇
建筑科学   5086篇
矿业工程   2059篇
能源动力   1716篇
轻工业   2844篇
水利工程   884篇
石油天然气   1486篇
武器工业   775篇
无线电   2766篇
一般工业技术   7972篇
冶金工业   2990篇
原子能技术   483篇
自动化技术   1139篇
  2024年   174篇
  2023年   509篇
  2022年   1115篇
  2021年   1389篇
  2020年   1377篇
  2019年   1091篇
  2018年   1018篇
  2017年   1377篇
  2016年   1366篇
  2015年   1342篇
  2014年   2246篇
  2013年   2212篇
  2012年   2737篇
  2011年   3057篇
  2010年   2447篇
  2009年   2697篇
  2008年   2266篇
  2007年   3429篇
  2006年   3133篇
  2005年   2902篇
  2004年   2315篇
  2003年   2108篇
  2002年   1701篇
  2001年   1392篇
  2000年   1209篇
  1999年   958篇
  1998年   715篇
  1997年   583篇
  1996年   508篇
  1995年   398篇
  1994年   357篇
  1993年   249篇
  1992年   151篇
  1991年   107篇
  1990年   84篇
  1989年   81篇
  1988年   59篇
  1987年   23篇
  1986年   15篇
  1985年   19篇
  1984年   8篇
  1983年   11篇
  1982年   6篇
  1981年   5篇
  1980年   5篇
  1963年   3篇
  1959年   4篇
  1956年   3篇
  1955年   4篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
Strain rate is not only an important measure to characterize the deformation property, but also an important parameter to analyze the dynamic mechanical properties of rock materials. In this paper, by using the SHPB test system improved with high temperature device, the dynamic compressive tests of sandstone at seven temperatures in the range of room temperature to 1000 °C and five impact velocities in the range of 11.0–15.0 m/s were conducted. Investigations were carried out on the influences of strain rate on dynamic compressive mechanical behaviors of sandstone. The results of the study indicate that the enhancement effects of strain rates on dynamic compressive strength, peak strain, energy absorption ratio of sandstone under high temperatures still exist. However, the increase ratios of dynamic compressive strength, peak strain, and energy absorption ratio of rock under high temperature compared to room temperature have no obvious strain rate effects. The temperatures at which the strain rates affect dynamic compressive strength and peak strain most, are 800, and 1000 °C, respectively. The temperatures at which the strain rates affect dynamic compressive strength and peak strain weakest, are 1000 °C, and room temperature, respectively. At 200 and 800 °C, the strain rate effect on energy absorption ratio are most significant, while at 1000 °C, it is weakest. There are no obvious strain rate effects on elastic modulus and increase ratio of elastic modulus under high temperatures. According to test results, the relationship formula of strain rate with high temperature and impact load was derived by internalizing fitting parameters. Compared with the strain rate effect at room temperature condition, essential differences have occurred in the strain rate effect of rock material under the influence of high temperature.  相似文献   
2.
Monomers and their polymers containing 3-arylcarbazolyl electrophores have been synthesized by the multi-step synthetic route. The materials were characterized by thermo-gravimetric analysis, differential scanning calorimetry and electron photoemission technique. The polymers represent materials of high thermal stability having initial thermal degradation temperatures in the range of 331–411 °C. The glass transition temperatures of the amorphous polymeric materials were in the rage of 148–175 °C. The electron photoemission spectra of thin layers of monomers showed ionization potentials in the range of 5.6–5.65 eV. Hole-transporting properties of the polymers were tested in the structures of organic light emitting diodes with Alq3 as the green emitter. The device containing hole-transporting layers of polyether with 3-naphthylcarbazolyl groups exhibited the best overall performance with a maximum current efficiency of 3.3 cd/A and maximum brightness of about 1000 cd/m2.  相似文献   
3.
介绍机械制造厂燃煤锅炉的烟尘特点,分析滤料失效的原因,提出一套针对该工况的滤料解决方案。介绍针对复杂工况条件所选用的纤维种类以及复合面层原料成分配比的确定,最终选用针刺工艺加工并对该新产品的基本性能进行了测试分析。  相似文献   
4.
5.
Thermosetting materials are widely used as encapsulation in the electrical packaging to protect the core electronic components from external force, moisture, dust, and other factors. However, the spreading and curing behaviors of such kind of fluid on a heated surface have been rarely explored. In this study, we experimentally and numerically investigated the spreading and curing behaviors of the silicone(OE6550 A/B, which is widely used in the light-emitting diode packaging) droplet with diameter of ~2.2 mm on a heated surface with temperature ranging from 25 ℃ to 250 ℃. For the experiments, we established a setup with high-speed camera and heating unit to capture the fast spreading process of the silicone droplet on the heated surface. For the numerical simulation, we built a viscosity model of the silicone by using the Kiuna's model and combined the viscosity model with the Volume of Fluid(VOF) model by the User Defined Function(UDF) method. The results show that the surface temperature significantly affected the spreading behaviors of the silicone droplet since it determines the temperature and viscosity distribution inside the droplet. For surface temperature varied from 25 ℃ to 250 ℃, the final contact radius changed from ~2.95 mm to ~1.78 mm and the total spreading time changed from ~511 s to ~0.15 s. By further analyzing the viscosity evolution of the droplet, we found that the decreasing of the total spreading time was caused by the decrease of the viscosity under high surface temperature at initial spreading stage, while the reduction of the final contact radius was caused by the curing of the precursor film. This study supplies a strategy to tuning the spreading and curing behavior of silicone by imposing high surface temperature, which is of great importance to the electronic packaging.  相似文献   
6.
A size-dependent governing equation is derived to investigate the torsional static behaviors of two-dimensionally functionally graded microtubes based on the modified couple stress theory. The shear modulus is assumed to vary along the tube’s length direction according to an exponential distribute function, and varies along the tube’s radius direction according to a power-law function. A generalized differential quadrature method is developed to determine the rotational angle and shear stresses. Some illustrative examples are given to investigate the effects of applied torques, the length scale parameter and various material compositions on the torsional angle and shear stresses.  相似文献   
7.
In order to improve the process effectiveness and joint quality, ultrasonic vibrations were integrated with friction stir lap welding. Effect of ultrasonic exertion on the process and joint quality of AA 6061-T6 were investigated. Upon ultrasonic exertion, joints owned larger effective lap width, shorter hooks and improved strength. Weld fracture mode changed from a ductile–brittle mixed mode to a more ductile mode while the fracture path shifted from lap interface to beyond the stir zone. Material flow and interface defects were characterised using lap welded dissimilar aluminium alloy joints. Ultrasonic vibration improved the material flow and reduced the interfacial defects. Variations in failure load of joints were found in accordance with the variations in material flow and interfacial defects.  相似文献   
8.
Formation of cobalt sulfide hollow nanocrystals through a mechanism similar to the Kirkendall Effect has been investigated in detail. It is found that performing the reaction at > 120 °C leads to fast formation of a single void inside each shell, whereas at room temperature multiple voids are formed within each shell, which can be attributed to strongly temperature‐dependent diffusivities for vacancies. The void formation process is dominated by outward diffusion of cobalt cations; still, the occurrence of significant inward transport of sulfur anions can be inferred as the final voids are smaller in diameter than the original cobalt nanocrystals. Comparison of volume distributions for initial and final nanostructures indicates excess apparent volume in shells, implying significant porosity and/or a defective structure. Indirect evidence for fracture of shells during growth at lower temperatures was observed in shell‐size statistics and transmission electron microscopy images of as‐grown shells. An idealized model of the diffusional process imposes two minimal requirements on material parameters for shell growth to be obtainable within a specific synthetic system.  相似文献   
9.
The basic methods of verifying continuous automatic belt weighers are described. A comparative analysis of these methods on the basis of experimental studies is made and ways of implementing the results in industry are recommended.  相似文献   
10.
Ordered porosity metal materials belong to a relatively new class of porous materials named gasars. This paper presents a mathematical model of the complex physical phenomena in the production of gasars. Analyses for heat transfer, solidification kinetics and gas diffusion were coupled to describe the formation of unique gasar structure. Several criterial functions were introduced to provide significant quantitative information about the relationship between the operating technological parameters and the final structure. The computational outcomes of the numerical simulation were compared with the characteristics of real gasar ingots. The model was applied to determine the boundary conditions that would provide approximately constant physical conditions on the solidification front. The structure sensitiveness of gasars with respect to the different technological parameters is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号