首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75562篇
  免费   8782篇
  国内免费   5137篇
电工技术   4783篇
技术理论   4篇
综合类   7226篇
化学工业   11867篇
金属工艺   5937篇
机械仪表   5019篇
建筑科学   10311篇
矿业工程   5285篇
能源动力   1702篇
轻工业   2400篇
水利工程   1472篇
石油天然气   1722篇
武器工业   1205篇
无线电   4143篇
一般工业技术   11196篇
冶金工业   3002篇
原子能技术   301篇
自动化技术   11906篇
  2024年   317篇
  2023年   914篇
  2022年   1914篇
  2021年   2450篇
  2020年   2545篇
  2019年   2079篇
  2018年   1965篇
  2017年   2635篇
  2016年   2948篇
  2015年   3083篇
  2014年   4659篇
  2013年   4241篇
  2012年   5894篇
  2011年   6048篇
  2010年   4749篇
  2009年   4910篇
  2008年   4373篇
  2007年   5521篇
  2006年   4808篇
  2005年   4088篇
  2004年   3306篇
  2003年   2920篇
  2002年   2397篇
  2001年   2016篇
  2000年   1721篇
  1999年   1357篇
  1998年   1073篇
  1997年   953篇
  1996年   776篇
  1995年   639篇
  1994年   562篇
  1993年   424篇
  1992年   309篇
  1991年   209篇
  1990年   154篇
  1989年   124篇
  1988年   92篇
  1987年   62篇
  1986年   29篇
  1985年   44篇
  1984年   39篇
  1983年   20篇
  1982年   18篇
  1981年   7篇
  1980年   25篇
  1979年   17篇
  1977年   6篇
  1976年   4篇
  1957年   3篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Investigation on the miniaturized parallel multichannel-based devices packed with glass beads to improve the mass exchange execution is the critical focal point of the current study. One of the essential parameters to specify the miniaturized devices' flow distribution is the residence time distribution (RTD). In the present context, the RTDs of a liquid tracer were investigated for the air-water multiphase flows (concurrent) across the multichannel-based miniaturized devices (comprising of 11 similar dimensional parallel channels). The devices were variable in height and packed with glass beads. The conductivity estimations generated the RTD curves and were addressed by the axial dispersion model (ADM). The fluid-flow rates differed within the range of 5–23 ml min−1. The axial dispersion coefficients and the rate of the specific energy dispersion were investigated. The effects of pressure difference and geometry on the hydrodynamic attributes and mixing properties were well-illustrated, and the new correlations were suggested.  相似文献   
2.
《Ceramics International》2022,48(15):21773-21780
In this work, Ni/TiC composites were synthesized by the laser cladding technique (LCT). A scanning electron microscope (SEM), X-ray diffractometer (XRD), microhardness meter, electrochemical workstation, and friction and wear tester examined the microstructure, surface morphology, phase structure, microhardness, wear, and corrosion resistances of the Ni/TiC composites. These results indicated the Ni/40TiC composite contained finer equiaxed crystals than the Ni and Ni/20TiC composites. In addition, numerous TiC particles in the Ni/40TiC composite impeded growth of the nickel crystals, which resulted in the fine microstructure of the Ni/40TiC composite. The Ni, Ni/20TiC, and Ni/40TiC composites exhibited face-centered cubic (f c c) lattices. The average microhardness values of the Ni/20TiC and Ni/40TiC composites were approximately 748 HV and 851 HV, respectively. The Ni/40TiC composite had the lowest friction coefficient (0.43) among all three coatings, and only some shallow scratches appeared on the surface of the Ni/40TiC composite. The corrosion potential (E) of Ni/40TiC exceeded the Ni/20TiC composite, and both were larger than the Ni composite, which indicated the Ni/40TiC composite had outstanding corrosion resistance and the Ni composite had poor corrosion resistance. The corrosion current densities (i) of Ni, Ni/20TiC, and Ni/40TiC composites were 5.912, 4.405, and 3.248 μA/cm2, respectively.  相似文献   
3.
《Ceramics International》2022,48(8):10601-10612
Using MgC2O4, Mg powders as raw materials and Ni(NO3)2?6H2O as a catalyst, CNTs/MgO composite powders were prepared by a catalytic combustion synthesis method. The CNTs/MgO composite powders were characterized by XRD, Raman spectroscopy, FESEM/EDS and HRTEM. The effects of catalyst content on the degree of graphitization and aspect ratio of the CNTs in composite powders were investigated. Moreover, the thermal shock resistance of low-carbon Al2O3–C refractories after adding the composite powder was investigated. The results indicated that the CNTs prepared with 1 wt% Ni(NO3)2?6H2O addition had a higher degree of graphitization and aspect ratio. In particular, the aspect ratio could reach approximately 200. The growth mechanism of hollow bamboo-like CNTs in the composite powders was proven to be a V-L-S mechanism. The thermal shock resistance of Al2O3–C samples could be improved significantly after adding CNTs/MgO composite powders. In particular, compared with CM0, the residual strength ratio of Al2O3–C samples with added 2.5 wt% composite powders could be increased 63.9%.  相似文献   
4.
In this paper, a new carbon support with a large number of mesoporous-structures is selected to prepare Pt/C catalysts. Transmission electron microscope (TEM) results show that the Pt/3# catalyst presents a sponge-like morphology, Pt particles are not only evenly distributed on the surface of carbon support, but also the smaller Pt particles are deposited in the mesoporous inside the support. The average diameter of Pt particles is only 2.8 nm. The membrane electrode assembly (MEA) based on Pt/3# catalyst also shows excellent performance. In conclusion, the 3# support is an idea carbon support for PEMFC, which helps to improve the oxygen reduction reaction (ORR) activity of the catalyst. Based on the “internal-Pt” structure of the support mesoporous, the efficient three-phase boundaries (TPBs) are construct to avoid the poisoning effect of ionomer on the nano-metal particles, reduce the activation impedance and oxygen mass transfer impedance, and improve the reaction efficiency.  相似文献   
5.
This work investigates selective Ni locations over Ni/CeZrOx–Al2O3 catalysts at different Ni loading contents and their influences on reaction pathways in ethanol steam reforming (ESR). Depending on the Ni loading contents, the added Ni selectively interacts with CeZrOx–Al2O3, resulting in the stepwise locations of Ni over CeZrOx–Al2O3. This behavior induces a remarkable difference in hydrogen production and coke formation in ESR. The selective interaction between Ni and CeZrOx for 10-wt.% Ni generates more oxygen vacancies in the CeZrOx lattice. The Ni sites near the oxygen vacancies enhance reforming via steam activation, resulting in the highest hydrogen production rate of 1863.0 μmol/gcat·min. In contrast, for 15 and 20-wt.% Ni, excessive Ni is additionally deposited on Al2O3 after the saturation of Ni–CeZrOx interactions. These Ni sites on Al2O3 accelerate coking from the ethylene produced on the acidic sites, resulting in a high coke amount of 19.1 mgc/gcat·h (20Ni/CZ-Al).  相似文献   
6.
盘扣式支撑架具有承载力强、方便安全、结实耐用等优点,被广泛应用于地铁施工。本文以广州市轨道交通十八号线万顷沙车辆段为例,对承插型盘扣式支撑架在地铁车辆段工程中的具体应用进行了详细说明,以期为同类工程提供参考。  相似文献   
7.
《Ceramics International》2022,48(18):25984-25995
Design of architectured composites with layered-ordered structure can solve the strength-toughness mismatch problem of structural materials. In the present study, heterostructure Ti6Al4V/TiAl laminated composite sheets with different thicknesses of interface layer and TiAl composite layer were successfully produced by hot-pressing technology. The effects of interface regulation and laminated structure on their mechanical properties, crack propagation, and fracture behavior were studied. The results indicated that compressive strength of the sheets increased with the decrease in interface thickness. Compressive strength of TiAl composite sheet with thicker composite layer reached 1481.55 MPa at the arrester orientation with sintering holding time of 40 min, which was 25.96% higher than that of the sheet obtained at 120 min. Analysis indicated that the interface area transferred stress through slip bands and through-interface cracks. Compressive strength at the divider orientation reached 1443.06 MPa, which was 45.78% higher than that of the sheet obtained at 120 min. In this case, the interface area transferred stress through slip bands and along-interface cracks. For TiAl composite sheets with thinner composite layer, compressive strength was further improved to 1631.01 MPa and 1594.66 MPa at the arrester and divider orientations with sintering holding time of 40 min, respectively. The ductile metal layer exerted a significant toughening effect. Both interface regulation and laminated structure transformation could enhance the hetero-deformation induced (HDI) strengthening and improve the comprehensive mechanical properties of the composite sheets.  相似文献   
8.
ABSTRACT

It is important to perform neutron transport simulations with accurate nuclear data in the neutronics design of a fusion reactor. However, absolute values of large-angle scattering cross sections vary among nuclear data libraries even for well-examined nuclide of iron. Benchmark experiments focusing on large-angle scattering cross sections were thus performed to confirm the correctness of nuclear data libraries. The series benchmark experiments were performed at a DT neutron source facility, OKTAVIAN of Osaka University, Japan, by the unique experimental system established by the authors’ group, which can extract only the contribution of large-angle scattering reactions. This system consists of two shadow bars, target plate (iron), and neutron detector (niobium). Two types of shadow bars were used and four irradiations were conducted for one experiment, so that contribution of room-return neutrons was effectively removed and only large-angle scattering neutrons were extracted from the measured four Nb reaction rates. The obtained experimental results were compared with calculations for five nuclear data libraries including JENDL-4.0, JEFF.-3.3, FENDL-3.1, ENDF/B- VII, and recently released ENDF/B-VIII. It was found from the comparison that ENDF/B-VIII showed the best result, though ENDF/B-VII showed overestimation and others are in large underestimation at 14 MeV.  相似文献   
9.
A new reverse build-up method is developed to fabricate an economical H2-permeable composite membrane. Sputtering and electroplating are used for the formation of a membrane comprised of a 3.7-μm-thick Pd60Cu40 (wt.%) alloy layer and a 13-μm-thick porous Ni support layer, respectively. The H2-permeation measurements are performed under the flow of a gaseous mixture of H2 and He at 300–320 °C and 50–100 kPa of H2 partial pressure. The H2/He selectivity values exceed 300. The activation energy at 300–320 °C is 10.9 kJ mol−1. The H2 permeability of the membrane is 1.25 × 10−8 mol m−1 s−1 Pa−0.5 at 320 °C after 448 h. The estimated Pd cost of the proposed membrane is approximately 1/8 of the cost for a pure Pd60Cu40 membrane. This study demonstrates that the proposed method allows the facile production of low-cost, Pd-based membranes for H2 separation.  相似文献   
10.
In this study, AA7075 aluminum matrix composites reinforced with the combination of SiC, Al2O3, and B4C particles were fabricated by the liquid metal infiltration method. The effects of the relative ratio of B4C and Al2O3 particles on the microstructural, wear, and corrosion features of the composite samples were analyzed using XRD, light metal microscopy, SEM, EDS, Brinell hardness, ball-on-disc type tribometer, and potentiodynamic polarization devices. It was determined that infiltration occurred more successfully, and homogenously distributed particles with reduced porosity were obtained as the amount of Al2O3 increased. Worn surface studies revealed that the specimens were predominantly worn by abrasion and adhesion. The increase in B4C/Al2O3 ratio caused a decrease in the hardness and wear strength, whereas it increased the corrosion resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号