首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
化学工业   14篇
金属工艺   1篇
能源动力   19篇
一般工业技术   1篇
冶金工业   2篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2015年   1篇
  2013年   2篇
  2012年   4篇
  2011年   7篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  1998年   1篇
排序方式: 共有37条查询结果,搜索用时 17 毫秒
1.
This paper focuses on the cathode and current collector layers of a co-sintered, all-ceramic solid oxide fuel cell (SOFC) concept. Challenges to reach good electrochemical performance have to be overcome, due to more demanding manufacturing conditions, including a relatively high co-sintering temperature. Master sintering curves show that the sintering activity of lanthanum strontium manganite (LSM) is significantly higher than that of 8-mol% yttria stabilized zirconia (8YSZ). By applying a double-layered cathode and a current collector with optimized microstructures the best electrochemical performance of the cathode is 0.26 Ωcm2 at 800 °C, evaluated from polarization resistances of 8YSZ electrolyte-supported symmetric cells post-sintered at 1150 °C <T<1250 °C. The cathode and current collector materials are adapted to fit the co-sintering process by adjustment of the paste compositions. Half-cells consisting of silicate mechanical support, LSM current collector, LSM mixed with 8YSZ composite cathode and 8YSZ electrolyte are co-sintered porous and defect-free at 1150 °C <T<1250 °C.  相似文献   
2.
The Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)-based multi-layered oxygen separation membrane was fabricated by the sequential electrophoretic deposition (EPD) process. A thin porous/dense bi-layer of BSCF was formed on a thick porous support of BSCF. The porous support prepared by a sacrificial template method using BSCF powder mixed with wheat starch (30 wt%) as a pore-forming agent, followed by uniaxial pressing and low-temperature sintering, was directly used as an EPD electrode. A thin BSCF layer was first formed on the porous support, and then a thin BSCF + PMMA (polymethyl methacrylate) layer was sequentially formed on the thin BSCF layer using a bimodal suspension of BSCF and PMMA. A 30-μm thin porous/dense bi-layer of BSCF of which the total thickness was obtained by optimizing the processes of EPD and subsequent co-sintering. The oxygen separation performance of 3.7 ml (STP) min?1 cm?2 at 860 °C was achieved for the BSCF-based multi-layered oxygen separation membrane.  相似文献   
3.
This work focuses on a novel, co-sintered, all-ceramic solid oxide fuel cell (SOFC) concept. The objective is the understanding of interaction and degradation mechanisms of the cathode and current collector layers within the design during co-sintering. Half cells consisting of silicate mechanical support, lanthanum strontium manganite (LSM) current collector, LSM mixed with 8 mol% yttria-stabilized zirconia (8YSZ) composite cathode and 8YSZ electrolyte were co-sintered at 1150 °C < T < 1250 °C. Crystallographically stable LSM compositions within the design were identified. However, the cathode and silicate/electrolyte interacted by interdiffusion of Zn (gas diffusion) and Mn (solid diffusion), and by the formation of several reaction phases (between silicate and cathode only). Introducing silicate poisoning decreased the electrochemical performance of the cell by around 40%. This is likely due to the formation of the Zn- and Mn-rich phase in the cathode, but may also be caused by a higher ohmic resistance of the current collector.  相似文献   
4.
Considering that conventional lanthanum chromate (LaCrO3) interconnector is hard to be co-sintered with green anode, we have fabricated a novel bilayered interconnector which consists of La-doped SrTiO3 (Sr0.6La0.4TiO3) and Sr-doped lanthanum manganite (La0.8Sr0.2MnO3). Sr0.6La0.4TiO3 is conductive and stable in reducing atmosphere, locating on the anode side; while La0.8Sr0.2MnO3 is on the cathode side. A slurry-brushing and co-sintering method is applied: the Sr0.6La0.4TiO3 and La0.8Sr0.2MnO3 slurries are successively brushed onto green anode specimen, followed by co-firing course to form a dense bilayered Sr0.6La0.4TiO3/La0.8Sr0.2MnO3 interconnector. For operating with humidified hydrogen and oxygen at 900 °C, the ohmic resistances between anode and cathode/interconnector are 0.33 Ω cm2 and 0.186 Ω cm2, respectively. The maximum power density is 290 mW cm−2 for a cell with interconnector, and 420 mW cm−2 for a cell without it, which demonstrates that nearly 70% of the power output can be achieved using this bilayered Sr0.6La0.4TiO3/La0.8Sr0.2MnO3 interconnector.  相似文献   
5.
Tape casting is conventionally used to prepare individual, relatively thick components (i.e., the anode or electrolyte supporting layer) for solid oxide fuel cells (SOFCs). In this research, a multilayer ceramic structure is prepared by sequentially tape casting ceramic slurries of different compositions onto a Mylar carrier followed by co-sintering at 1400 °C. The resulting half-cells contains a 300 μm thick NiO–yttria-stabilized zirconia (YSZ) anode support, a 20 μm NiO–YSZ anode functional layer, and an 8 μm YSZ electrolyte membrane. Complete SOFCs are obtained after applying a Gd0.1Ce0.9O2 (GDC) barrier layer and a Sm0.5Sr0.5CoO3 (SSC) -GDC cathode by using a wet-slurry spray method. The 50 mm × 50 mm SOFCs produce peak power densities of 337, 554, 772, and 923 mW/cm2 at 600, 650, 700, and 750 °C, respectively, on hydrogen fuel. A short stack including four 100 mm × 150 mm cells is assembled and tested. Each stack repeat unit (one cell and one interconnect) generates around 28.5 W of electrical power at a 300 mA/cm2 current density and 700 °C.  相似文献   
6.
《Ceramics International》2022,48(1):754-759
Thermal control coatings (TCCs) are an essential part of the thermal control systems in the spacecraft. Solar absorptance and emittance are the key performance parameters of TCCs. To develop an ultra-low solar absorption and stable inorganic TCCs for surface radiator, different TCCs were prepared by co-sintering ZnO and SiO2 nanoparticles to form Zn2SiO4/SiO2 pigment in this work, and the optical properties and radiation stability were systematically studied. It is found that the coating based on composite pigment has high reflectivity in the ultraviolet band and excellent optical performance possessing the low solar absorption of 0.06. In addition, the Zn2SiO4/SiO2 coating demonstrates the highest proton and electron radiation stability because that SiO2 between Zn2SiO4 particles acts as the relaxation center of the defects caused by radiation.  相似文献   
7.
Ceria is proposed as an additive for La0.8Sr0.2MnO3 (LSM) cathodes in order to increase both their thermal stability and electrochemical properties after co-sintering with an yttria-stabilized zirconia (YSZ) electrolyte at 1350 °C. Results show that LSM without CeO2 addition is unstable at 1350 °C, whereas the thermal stability of LSM is drastically improved after addition of CeO2. In addition, results show a correlation between CeO2 addition and the maximum power density obtained in 300 μm thick electrolyte-supported single cells in which the anode and modified cathode have been co-sintered at 1350 °C. Single cells with cathodes not containing CeO2 produce only 7 mW cm−2 at 800 °C, whereas the power density increases to 117 mW cm−2 for a CeO2 addition of 12 mol%. Preliminary results suggest that CeO2 could increase the power density by at least two mechanisms: (1) incorporation of cerium into the LSM crystal structure, and (2) by modification or reduction of La2Zr2O7 formation at high temperature. This approach permits the highest LSM-YSZ co-sintering temperature so far reported, providing power densities of hundreds of mW cm−2 without the need for a buffer layer between the LSM cathode and YSZ electrolyte. Therefore, this method simplifies the co-sintering of SOFC cells at high temperature and improves their electrochemical performance.  相似文献   
8.
Two anode-supported tubular solid oxide fuel cells (SOFCs) have been connected by a co-sintered ceramic interconnector to form a stack. This novel bilayered ceramic interconnector consists of La-doped SrTiO3 (La0.4Sr0.6TiO3) and Sr-doped lanthanum manganite (La0.8Sr0.2MnO3), which is fabricated by co-sintering with green anode at 1380 °C for 3 h. La0.4Sr0.6TiO3 (LST) acts as a barrier avoiding the outward diffusion of H2 to the cathode; while La0.8Sr0.2MnO3 (LSM) prevents O2 from diffusing inward to the anode. The compatibility of LST and LSM, as well as their microstructure which co-sintered with anode are both studied. The resistances between anode and LST/LSM interconnector at different temperatures are determined by AC impedance spectra. The results have showed that the bilayered LST/LSM is adequate for SOFC interconnector application. The active area is 2 cm2 for interconnector and 16 cm2 for the total cathode of the stack. When operating at 900 °C, 850 °C, 800 °C with H2 as fuel and O2 as oxidant, the maximum power density of the stack are 353 mW cm−2, 285 mW cm−2 and 237.5 mW cm−2, respectively, i.e., approximately 80% power output efficiency can be achieved compared with the total of the two single cells.  相似文献   
9.
In this study, anode supported intermediate temperature micro-tubular solid oxide fuel cells (MT-SOFCs) have been fabricated by combination of phase-inversion, dip-coating, co-sintering and printing method. The MT-SOFC consists of a ∼300 μm wall-thickness Ni–Sc2O3 stabilized ZrO2 (ScSZ) anode tube, ∼10 μm ScSZ dense electrolyte layer, ∼10 μm Ce0.9Gd0.1O2−δ (GDC) membrane buffer layer and ∼50 μm Ba0.9Co0.7Fe0.2Nb0.1O3−δ (BCFN) cathode layer. SEM and electrochemical impedance spectroscopy (EIS) analysis suggested that the novel structured anode can remarkably diminish the porous anode geometrical tortuosity and improve the fuel gas diffusivity. High peak power densities of 0.34, 0.51 and 0.72 W cm−2 have been achieved with humidified hydrogen as the fuel and ambient air as oxidant at 550, 600 and 650 °C, respectively. Further, the cell has demonstrated a very stable performance with no significant cell voltage degradation under a constant current of 0.6 A cm−2 for over 213 h test at 650 °C.  相似文献   
10.
The capability to produce a hybrid tool steel with properties that can be modulated on the base of the specific application was investigated. Powder metallurgy (PM) offers the possibility to blend and co-sinter different powders to produce a hybrid material which combines the properties of the base materials. With the aim of producing a new steel with high hardness and good toughness, a hot work tool steel (HWTS) and a high speed steel (HSS) powder were selected. Four blends with different composition (HWTS-HSS: 20%-80%, 40%-60%, 60%-40%, 80%-20%) were produced by spark plasma sintering (SPS) and thermally treated. The influence of composition, particle size distribution and oxygen content was evaluated by the means of density, hardness and apparent fracture toughness of the blends. By selecting powders with a small size and narrow particles size distribution near full dense blends with good mechanical properties can be sintered. Large particles hinder the efficient co-sintering due to the different densification kinetics of the powders. High oxygen content in the base powders does not significantly influences the final density but negatively affects the consolidation process, strongly reducing toughness, particularly of the HWTS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号