首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2436篇
  免费   189篇
  国内免费   59篇
电工技术   24篇
综合类   49篇
化学工业   1022篇
金属工艺   129篇
机械仪表   84篇
建筑科学   24篇
矿业工程   68篇
能源动力   439篇
轻工业   95篇
水利工程   1篇
石油天然气   56篇
武器工业   4篇
无线电   104篇
一般工业技术   414篇
冶金工业   127篇
原子能技术   22篇
自动化技术   22篇
  2024年   7篇
  2023年   72篇
  2022年   106篇
  2021年   127篇
  2020年   120篇
  2019年   101篇
  2018年   101篇
  2017年   107篇
  2016年   79篇
  2015年   64篇
  2014年   134篇
  2013年   141篇
  2012年   78篇
  2011年   190篇
  2010年   136篇
  2009年   131篇
  2008年   135篇
  2007年   121篇
  2006年   110篇
  2005年   89篇
  2004年   83篇
  2003年   58篇
  2002年   58篇
  2001年   52篇
  2000年   43篇
  1999年   51篇
  1998年   26篇
  1997年   32篇
  1996年   27篇
  1995年   18篇
  1994年   19篇
  1993年   15篇
  1992年   11篇
  1991年   8篇
  1990年   9篇
  1989年   7篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1951年   2篇
排序方式: 共有2684条查询结果,搜索用时 312 毫秒
1.
Efficient and sustainable Janus catalysts toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are highly desirable for future hydrogen production via water electrolysis. Herein we report an active Janus electrocatalyst of amorphous-crystalline cobalt-molybdenum bimetallic phosphide heterostructured nanosheets on nickel foam (CoMoP/CoP/NF) for efficient electrolysis of alkaline water. As-reported CoMoP/CoP/NF consists of amorphous bimetal phosphide nanosheets doped with crystalline CoMoP/CoP heterostructured nanoparticles on NF. It can efficiently catalyze both HER (η = 127 mV@100 mA cm?2) and OER (η = 308 mV@100 mA cm?2) in alkaline electrolyte with long-term durability. Serving as anode and cathode of water electrolyzer, CoMoP/CoP/NF generates electrolytic current of 10, 50 and 100 mA cm?2 at low voltage of 1.50, 1.59, and 1.67 V, respectively.  相似文献   
2.
The activity of catalysts with various sizes was compared in a fixed-bed Fischer–Tropsch reactor under similar operating conditions by determining the deactivation model. Catalyst size had no impact on the type of deactivation model. The smaller catalyst showed a smaller deactivation constant of catalyst (kd) and a lower deactivation rate in the initial stage. The decline in the activities of the catalyst with a mesh size of 40 was lower than the other catalysts, suggesting its higher long-term stability (ass). Larger catalyst sizes led to the fouling of carbon and heavy hydrocarbons, decreasing the specific surface of the catalyst, thus increasing the pore diffusion resistance and further decrementing the catalyst activities.  相似文献   
3.
The price of cobalt has increased by some 450% in the past two years, mainly due to increasing demand for lithium–ion batteries. With an official 2017 production of 64 kt, the Democratic Republic of Congo produces more than half of the world’s cobalt. African Copperbelt operations have traditionally focused on copper production; however, it has now become imperative to also consider cobalt recovery from these ores. A plethora of processing routes is possible. Most hydrometallurgical flowsheets recover cobalt from the raffinate of the low-grade copper solvent-extraction circuit. Downstream purification processes include sequential precipitation with a variety of reagents, solvent extraction, and ion exchange. Product choices include hydroxide, carbonate, sulfate, and metal cathode. This study assesses technical and economic advantages and limitations of various approaches to the hydrometallurgical processing of cobalt in an African context.  相似文献   
4.
Cobalt-incorporated MCM-41(Co-MCM-41) was used as a heterogeneous catalyst for the ozonation of para-chlorobenzoic acid (p-CBA) in aqueous solution. Cobalt oxide supported on MCM-41(Co/MCM-41) was synthesized for comparison. Their textural properties were elucidated by various characterization techniques to understand the relationship between surface texture and catalytic activity. TOC removal at 60 min reached 91% with Co-MCM-41, 83% with Co/MCM-41 and only 52% with ozone alone, respectively. Observations from diffuse reflection spectroscopy demonstrated that different metal phases were formed in these cobalt-modified molecular sieves samples. Radical scavenger experiments indicated the formation of hydroxyl radicals that were responsible for the effective degradation of p-CBA. An integrated approach to the catalytic mechanism was proposed by considering the variation of pH in the course of ozonation as well as its subsequent influence on the dissociation of targeted compounds and surface charge of the catalyst. In the reusability experiments, the reused Co-MCM-41 was able to regain the same catalytic capability as the fresh one within 5 cycles. X-ray photoelectron spectroscopy results indicated that a part of Co2+ was oxidized to Co3+ after oxidation reaction.  相似文献   
5.
The potential energy profile of the reaction between dimethyl disulfide and OH? radicals is explored by utilizing ab initio and hybrid meta density functional theory methods. Having the energies and structural data of the stationary points, statistical rate theories, such as transition state theory and variable reaction coordinate-transition state theory, are employed to compute the overall rate constants, and discuss the mechanism and product channels. On the basis of the calculations, the overall rate coefficient is predicted to be 2.49?×?10?10?cm3?molecule?1?s?1 at 298?K. It is found that in the most favorable pathway, the reaction proceeds via formation of the relatively unstable intermediate CH3S?(OH)SCH3 decomposing rapidly to yield CH3S?+CH3SOH.  相似文献   
6.
In this study, we investigated the effects of substituting Li+ for Co2+ at the B sites of the spinel lattice on the structural, magnetic and magnetostrictive properties of cobalt ferrites. The Li+ substituted cobalt ferrites, Co1-xLixFe2O4, with x varying from 0 to 0.7 in 0.1 increments, were synthesized with a sol-gel auto-combustion method using the cathode materials of spent Li-ion batteries. X-ray diffraction analysis revealed that all the Co1-xLixFe2O4 nanopowders had a single-phase spinel structure and the lattice parameters decreased with increasing Li+ content, which can be proved by slight shifts towards higher diffraction angle values of the (311) peak. Field emission scanning electron microscopy was used to observe the fractured inner surface of the sintered cylindrical rods and the increased porosity resulted in a decreased magnetostriction. The oxidation states of Co and Fe in the cobalt ferrite samples were examined by X-ray photoelectron spectroscopy. High resolution transmission electron microscopy micrographs showed that most particles were roughly spherical and with sizes of 25–35?nm. Li+ substitution had a strong effect on the saturation magnetization and coercivity, which were characterized with a vibrating sample magnetometer. The Curie temperature was reduced due to the decrease in magnetic cations and the weakening of the exchange interactions. The magnetostrictive properties were influenced by the incorporation of Li+ at the B sites of the spinel structure and correlated with the changes in porosity, magnetocrystalline anisotropy and the cation distribution.  相似文献   
7.
Porous carbon nanostructures are promising supports for stabilizing the highly dispersed metal nanoparticles and facilitating the mass transfer during the reaction, which are critical to achieve the high efficiency of hydrogen generation from sodium borohydride dehydrogenation. Herein, the catalytically active porous architectures are simply prepared by using 2-methylimidazole and melamine as reactive sources. The structural and compositional characterizations reveal the coexistence of metallic cobalt and N-doped carbon in porous architectures. Electron microscopy observations indicate that the synthesized products are smartly constructed from the carbon nanosheets with densely dispersed Co nanoparticles. Due to the notable structural features, the prepared Co@NC-600 sample presents the highly efficient activity for catalytic hydrolysis of NaBH4 with a hydrogen generation rate of 2574 mL min−1 gcat−1 and an activation energy of 47.6 kJ mol−1. The catalytically active metallic Co and suitable support-effect of N-doped carbon are responsible for catalytic dehydrogenation.  相似文献   
8.
Formation of cobalt sulfide hollow nanocrystals through a mechanism similar to the Kirkendall Effect has been investigated in detail. It is found that performing the reaction at > 120 °C leads to fast formation of a single void inside each shell, whereas at room temperature multiple voids are formed within each shell, which can be attributed to strongly temperature‐dependent diffusivities for vacancies. The void formation process is dominated by outward diffusion of cobalt cations; still, the occurrence of significant inward transport of sulfur anions can be inferred as the final voids are smaller in diameter than the original cobalt nanocrystals. Comparison of volume distributions for initial and final nanostructures indicates excess apparent volume in shells, implying significant porosity and/or a defective structure. Indirect evidence for fracture of shells during growth at lower temperatures was observed in shell‐size statistics and transmission electron microscopy images of as‐grown shells. An idealized model of the diffusional process imposes two minimal requirements on material parameters for shell growth to be obtainable within a specific synthetic system.  相似文献   
9.
研究了用固体润滑石墨、碳化硅、二硫化钼等填料改性的聚苯硫醚 (PPS)涂层的耐磨性能。实验结果表明 ,聚苯硫醚复合涂层具有优良的耐磨性 ;加入适量 ( 3 0 % )的石墨、碳化硅等固体润滑剂 (石墨 :碳化硅 =2∶3 ) ,可以有效提高涂层的耐磨性能 ,而二硫化钼和三氧化二铬的减摩效果更佳  相似文献   
10.
A method to produce monodisperse magnetic composite spheres with diameters from less than 100 nm to more than 1 μm in water solution is reported. The spheres consist of a dielectric silica core and a cobalt/cobalt oxide shell which can be protected from further oxidation with an outer shell of silica or, alternatively, they can be covered with the polymer polyvinylpyrrolidone as a stabilizer. The formation of a uniform magnetic shell proceeds with the adsorption of metallic cobalt seeds, produced by the reduction of cobalt chloride with sodium borohydride, on a self‐assembled layer of polyelectrolytes on the silica core. In the second step, an outer silica shell can be formed by the hydrolysis and condensation of (3‐aminopropyl)trimethoxysilane and tetraethoxysilane. The double‐shell composite spheres show excellent sphericity, monodispersity, and a magnetic hysteresis loop at room temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号