首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13399篇
  免费   513篇
  国内免费   316篇
电工技术   723篇
综合类   401篇
化学工业   3656篇
金属工艺   1101篇
机械仪表   534篇
建筑科学   879篇
矿业工程   198篇
能源动力   2028篇
轻工业   255篇
水利工程   33篇
石油天然气   92篇
武器工业   55篇
无线电   569篇
一般工业技术   2594篇
冶金工业   713篇
原子能技术   39篇
自动化技术   358篇
  2024年   20篇
  2023年   267篇
  2022年   291篇
  2021年   384篇
  2020年   396篇
  2019年   330篇
  2018年   308篇
  2017年   395篇
  2016年   297篇
  2015年   301篇
  2014年   624篇
  2013年   724篇
  2012年   725篇
  2011年   1201篇
  2010年   936篇
  2009年   841篇
  2008年   867篇
  2007年   851篇
  2006年   671篇
  2005年   591篇
  2004年   584篇
  2003年   432篇
  2002年   403篇
  2001年   284篇
  2000年   245篇
  1999年   236篇
  1998年   222篇
  1997年   155篇
  1996年   127篇
  1995年   118篇
  1994年   100篇
  1993年   65篇
  1992年   62篇
  1991年   40篇
  1990年   32篇
  1989年   28篇
  1988年   30篇
  1987年   12篇
  1986年   8篇
  1985年   4篇
  1984年   8篇
  1983年   6篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1976年   2篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Development of efficient, low cost and multifunctional electrocatalysts for water splitting to harvest hydrogen fuels is a challenging task, but the combination of carbon materials with transition metal-based compounds is providing a unique and attractive strategy. Herein, composite systems based on cobalt ferrite oxide-reduced graphene oxide (Co2FeO4) @(rGO) using simultaneous hydrothermal and chemical reduction methods have been prepared. The proposed study eliminates one step associated with the conversion of GO into rGO as it uses direct GO during the synthesis of cobalt ferrite oxide, consequently rGO based hybrid system is achieved in-situ significantly, the optimized Co2FeO4@rGO composite has revealed an outstanding multifunctional applications related to both oxygen evolution reaction (OER) and hydrogen counterpart (HER). Various metal oxidation states and oxygen vacancies at the surface of Co2FeO4@rGO composites guided the multifunctional surface properties. The optimized Co2FeO4@rGO composite presents excellent multifunctional properties with onset potential of 0.60 V for ORR, an overpotential of 240 mV at a 20 mAcm?2 for OER and 320 mV at a 10 mAcm?2 for HER respectively. Results revealed that these multifunctional properties of the optimized Co2FeO4@ rGO composite are associated with high electrical conductivity, high density of active sites, crystal defects, oxygen vacancies, and favorable electronic structure arisinng from the substitution of Fe for Co atoms in binary spinel oxide phase. These surface features synergistically uplifted the electrocatalytic properties of Co2FeO4@rGO composites. The multifunctional properties of the Co2FeO4@ rGO composite could be of high interest for its use in a wide range of applications in sustainable and renewable energy fields.  相似文献   
2.
《Ceramics International》2021,47(18):25505-25513
Herein, (Co0.5Ni0.5)Cr0.3Fe1.7O4/graphene oxide nanocomposites were fabricated by ultrasonication technique, using pure spinel ferrite and graphene oxide synthesized by sol-gel method and modified Hummers' method, respectively. The effect of graphene incorporation with ferrite nanoparticles was studied by X-ray diffraction (XRD), electrical and dielectric measurements. XRD analysis revealed the spinel phase for the ferrite sample and confirmed the formation of graphene oxide. The crystallite size was found in the range of 3743 nm and the porosity increased with the increase in the concentration of graphene oxide in the composites. The DC electrical resistivity of spinel ferrite was found equal to 3.83×109 Ω.cm and it substantially decreased with the increase in the percentage of graphene oxide at room temperature. The real and imaginary part of relative permittivity followed the Maxwell-Wagner type of interfacial polarization. AC conductivity confirmed the conduction by hopping mechanism and increased on increasing the GO content. The coupling of magnetic ferrite with graphene oxide tunes the magneto-electrical properties for potential applications at high frequencies.  相似文献   
3.
In this study, seven different filler materials in different proportions were added to a Ba-Ca-Si glass matrix “H” to investigate new sealant with higher thermal expansion coefficient (CTE) value and good sealing performance for application in oxygen transport membrane (OTM). SrTi0.75Fe0.25O3-δ (STF25) was used as an OTM, and the sealing partners were ferritic steel Aluchrom and pre-oxidized Aluchrom. Compatibility tests were carried out to investigate the feasibility of the composites. Higher CTE values were found in dilatometer tests on composite samples by adding 40 wt% Ag (HAg40) and 30 wt% Ni-Cr (HNC30). Gas-tightness measurements of sandwiched samples produced appropriate helium leakage rates in the range of 10?6 mbar·l·s?1. Sealing behaviour of sealants HAg40 and HNC30 were investigated by joining STF25 and as-delivered/pre-oxidized Aluchrom together. Scanning electron microscopy (SEM) on cross-sections of the joints revealed a homogeneous microstructure and good adherence of the glass sealants to support metals and STF25.  相似文献   
4.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
5.
《Ceramics International》2022,48(12):16877-16884
Oxygen selective membrane on the base of cermet δ-Bi2O3/Ag with an interpenetrating structure has the maximum potential efficiency of air separation. However, the degradation processes, including the phase degradation of fluorite δ-Bi2O3, do not make it possible to create a membrane with the required perfection and durability. In this work, the ordering of oxygen vacancies with the transformation of fluorite into the rhombohedral phase (S.G. R-3) was studied by powder HT XRD in situ at 600 °C on dense Bi0.78Er0.2Hf0.02O1.51 ceramics. Fast regeneration of disordered fluorite occurs at T = 640–700 °C. The phase degradation of fluorite due to the segregation of dopants at the second stage leads into stable phases - sillenite, tetragonal or rhombohedral phase (S.G. R-3m), depending on the composition of δ-Bi2O3. Fast regeneration of fluorite occurs when heated to 820 °C, which is unacceptable for membranes. Analysis of all available data allows us to propose approaches to optimize the composition of δ-Bi2O3 and technical solutions for creating durable oxygen selective membranes with promising use in distributed multigeneration. As a result of the analysis, a new solid electrolyte with better parameters was obtained.  相似文献   
6.
不同给液方式对铜电解过程中有重要的影响,不同的循环方式会影响槽内温度分布、电解液成分及阳极泥沉降等,因此,根据铜电解生产不同情况的需要,分析对比了多种给液方式在贵冶电解车间的应用,总结了这几种给液方式的优缺点和适用条件。  相似文献   
7.
The electrode ionomer is a key factor that significantly affects the catalyst layer morphology and fuel cell performance. Herein, sulfonated poly(arylene ether sulfone)-based electrode ionomers with polymers of various molecular weights and alcohol/water mixtures were prepared, and those comprising the alcohol/water mixture showed a higher performance than the ones prepared using higher boiling solvents, such as dimethylacetamide; this is owing to the formation of the uniformly dispersed ionomer catalyst layer. The relation between ionomer molecular weight for the same polymer structure and the sulfonation degree was investigated. Because the chain length of polymer varies with molecular weight and chain entanglement degree, its molecular weight affects the electrode morphology. As the ionomer covered the catalyst, the agglomerates formed were of different morphologies according to their molecular weight, which could be deduced indirectly through dynamic light scattering and scanning electron microscopy. Additionally, the fuel cell performance was confirmed in the current-voltage curve.  相似文献   
8.
《Ceramics International》2015,41(6):7478-7488
Gas sensing characteristics of one-electrode sensors based on the In2O3 ceramics doped by gallium and phosphorus have been discussed. In2O3-based ceramic was prepared by sol–gel technology. Ozone, CO, CH4 and H2 were used as tested gases. The doping concentration effect on the sensor parameters such as magnitude of response, operating temperature, response and recovery times, sensitivity to the air humidity, and selectivity have been analyzed. It was shown that In2O3 doping by Ga and P could be used for the sensor performance optimization. It was assumed that the appearance of the second phase (InPO4 and Ga2O3) and the change of structural parameters, taking place during doping process, were the main factors controlling the change of operating characteristics in In2O3:P and In2O3:Ga-based sensors.  相似文献   
9.
The performance of low-to-intermediate temperature (400–800?°C) solid oxide fuel cells (SOFCs) depends on the properties of electrolyte used. SOFC performance can be enhanced by replacing electrolyte materials from conventional oxide ion (O2-) conductors with proton (H+) conductors because H+ conductors have higher ionic conductivity and theoretical electrical efficiency than O2- conductors within the target temperature range. Electrolytes based on cerate and/or zirconate have been proposed as potential H+ conductors. Cerate-based electrolytes have the highest H+ conductivity, but they are chemically and thermally unstable during redox cycles, whereas zirconate-based electrolytes exhibit the opposite properties. Thus, tailoring the properties of cerate and/or zirconate electrolytes by doping with rare-earth metals has become a main concern for many researchers to further improve the ionic conductivity and stability of electrolytes. This article provides an overview on the properties of four types of cerate and/or zirconate electrolytes including cerate-based, zirconate-based, single-doped ceratezirconate and hybrid-doped ceratezirconate. The properties of the proton electrolytes such as ionic conductivity, chemical stability and sinterability are also systematically discussed. This review further provides a summary of the performance of SOFCs operated with cerate and/or zirconate proton conductors and the actual potential of these materials as alternative electrolytes for proton-conducting SOFC application.  相似文献   
10.
《Ceramics International》2021,47(19):26598-26619
The growing demands for Li-ion batteries (LIBs) in the electrification revolution, require the development of advanced electrode materials. Recently, intercalating titanium niobium oxide (TNO) anode materials with the general formula of TiNbxO2+2.5x have received lots of attention as an alternative to graphite and Li4Ti5O12 commercial anodes. The desirability of this family of compounds stems from their high theoretical capacities (377–402 mAh/g), high safety, high working voltage, excellent cycling stability, and significant pseudocapacitive behavior. However, the rate performance of TNO-based anodes is poor owing to their low electronic and ionic conductivities. TNO-based composites generally are prepared with two aims of enhancing the conductivity of TNO and achieving a synergic effect between the TNO and the other component of the composite. Compositing with carbon matrices, such as graphene and carbon nanotubes (CNTs) are the most studied strategy for improving the conductivity of TNO and optimizing its high-rate performance. Also, for obtaining anode materials with high capacity and high long-term stability, the composites of TNO with transition metal dichalcogenides (TMDs) materials were proposed in previous literature. In this work, a comprehensive review of the TNO-based composites as the anodes for LIBs is presented which summarizes in detail the main recent literature from their synthesis procedure, optimum synthesis parameters, and the obtained morphology/structure to their electrochemical performance as the LIBs anode. Finally, the research gaps and the future perspective are proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号