首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
能源动力   2篇
  2020年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
With the reduction of solid oxide fuel cells (SOFCs) operating temperature to the range of 600 °C–800 °C, metallic alloy with high oxidation resistance are used to replace traditional ceramic interconnects. Metallic interconnects is advantageous over ceramic interconnects; in terms of manufacturability, cost, mechanical strength, and electrical conductivity. To date, promising candidates for metallic interconnects are all Cr-containing alloys, which are susceptible to volatile Cr migration that causes cell degradation. As such, protective coatings have been developed to effectively inhibit Cr migration; as well as maintain excellent electrical conductivity and good oxidation resistance. This article reviews the progress and technical challenges in developing metallic interconnects; different types of protective coatings and deposition techniques for metallic interconnects for intermediate-temperature SOFC applications.  相似文献   
2.
Solid oxide fuel cell (SOFC) is the modern eco-friendly technology of fuel cell power generation system. It generates electricity from a redox chemical reaction without producing hazardous gases. It consists of anode, cathode and electrolyte. It is operated in the form of stack connected by interconnects to boost-up power output. The recent development of low-temperature (600 °C–800 °C) brings an opportunity to use metallic interconnects over ceramics. Cr-based metallic interconnects are one of the prominent metallic interconnects. They offer chemical inertness, thermal stability, compatible coefficient of thermal expansion and highly dense structure. However, the Cr-migration towards the cathode side is the major problem in them which adversely affect the SOFCs performance. Therefore a good oxidation resistance without sacrificing electrical conductivity is required. To resolve this issue, several alloying elements and spinel coatings have experimented. These spinel coatings are the thin solid films of Mn, Co, Cu and rare earth metals. This review concluded that the Mn–Co based spinal coating showed excellent performance in reducing the Cr-migration in specially designed expensive Crofer 22 APU interconnect. However, the emerging low-cost ferritic interconnects also show their best results with Cu–Fe based spinel coating. Among them, the SUS-430 interconnect shows the equivalent performance of Crofer 22 APU interconnect after surface treatment and appropriate Cu–Fe based spinel coating. Therefore, it can replace the Crofer 22 APU interconnect on a cost basis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号