首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   955篇
  免费   4篇
  国内免费   4篇
电工技术   11篇
综合类   14篇
化学工业   107篇
机械仪表   6篇
建筑科学   50篇
矿业工程   2篇
能源动力   701篇
轻工业   5篇
石油天然气   9篇
无线电   1篇
一般工业技术   49篇
冶金工业   2篇
原子能技术   2篇
自动化技术   4篇
  2023年   18篇
  2022年   44篇
  2021年   41篇
  2020年   48篇
  2019年   44篇
  2018年   41篇
  2017年   21篇
  2016年   12篇
  2015年   19篇
  2014年   29篇
  2013年   35篇
  2012年   52篇
  2011年   125篇
  2010年   100篇
  2009年   79篇
  2008年   48篇
  2007年   64篇
  2006年   29篇
  2005年   15篇
  2004年   13篇
  2003年   11篇
  2002年   10篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1995年   7篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
排序方式: 共有963条查询结果,搜索用时 15 毫秒
1.
The main objective of the paper is to establish an arrangement of sources of exergy losses (internal and external ones) and to estimate the value of the losses in an industrial ozone production installation. An exergetic model of industrial installation in a system approach corresponding to real conditions has been formulated.  相似文献   
2.
新型中低温混合工质联合循环   总被引:4,自引:7,他引:4  
为了更加有效地回收利用中低温余热,该文提出了一个由动力循环和吸收式制冷循环有机结合而成的新型混合工质联合循环。吸收式制冷循环能够利用蒸汽透平排气的低品位余热制冷,并将冷能用于动力系统的冷凝过程,从而降低蒸汽透平的排气压力和循环的平均放热温度,提高了系统的热效率。与常规混合工质动力循环相比,新循环的透平排气压力由0.44MPa降为0.17MPa,循环平均放热温度由79.2℃降低为39.9℃,系统热效率由10.3%提高到13.4%,系统火用效率由40.8%提高到53.3%。该新型循环开拓了有效利用中低温余热利用的新途径。  相似文献   
3.
A new configuration of solar energy-driven integrated system for ammonia synthesis and power generation is proposed in this study. A detailed dynamic analysis is conducted on the designed system to investigate its performance under different radiation intensities. The solar heliostat field is integrated to generate steam that is provided to the steam Rankine cycle for power generation. The significant amount of power produced is fed to the PEM electrolyser for hydrogen production after covering the system requirements. A pressure swing adsorption system is integrated with the system that separates nitrogen from the air. The produced hydrogen and nitrogen are employed to the cascaded ammonia production system to establish increased fractional conversions. Numerous parametric studies are conducted to investigate the significant parameters namely; incoming beam irradiance, power production using steam Rankine cycle, hydrogen and ammonia production and power production using TEGs and ORC. The maximum hydrogen and ammonia production flowrates are revealed in June for 17th hour as 5.85 mol/s and 1.38 mol/s and the maximum energetic and exergetic efficiencies are depicted by the month of November as 25.4% and 28.6% respectively. Moreover, the key findings using the comprehensive dynamic analysis are presented and discussed.  相似文献   
4.
A novel sulfur–iodine (SI or IS) cycle integrated with HI–I2–H2O electrolysis for hydrogen production was developed and thermodynamically analyzed in this work. HI–I2–H2O electrolysis was used to replace the conventional concentration, distillation, and decomposition processes of HI, so as to simplify the flowsheet of SI cycle. And then the new cycle was divided into Bunsen reaction, H2SO4 decomposition and HI–I2–H2O electrolysis sections. Through incorporating the user-defined module of HI–I2–H2O electrolysis with Aspen Plus, the cycle was simulated and 0.448 mol/h (10 L/h) of H2 was produced. The overall energy and exergy efficiencies of the novel SI system were estimated to be 15.3–31.0% and 32.8%, respectively. Most exergy destruction occurred in the H2SO4 decomposer and condenser for H2SO4 decomposition and Bunsen reaction sections, which accounted for 93.0% and 63.4%, respectively. A high exergy efficiency of 92.4% for HI–I2–H2O electrolysis section with less exergy destruction was determined, mostly due to the transformation of the overall electricity in electrolytic cell to exergy. Appropriate internal heat exchange and waste heat recovery will favor improving the energy and exergy efficiencies.  相似文献   
5.
In order to meet the energy and fuel needs of societies in a sustainable way and hence preserve the environment, there is a strong need for clean, efficient and low-emission energy systems. In this regard, it is aimed to generate cleaner energy outputs, such as electricity, hydrogen and ammonia as well as some additional useful commodities by utilizing both methane gas and the waste heat of an integrated unit to the whole system. In this paper, a novel multi-generation plant is proposed to generate power, hydrogen and ammonia as a chemical fuel, drying, freshwater, heating, and cooling. For this reason, the Brayton cycle as prime unit using methane gas is integrated into the s-CO2 power cycle, organic Rankine cycle, PEM electrolyzer, freshwater production unit, cooling cycle and dryer unit. In order then to evaluate the designed integrated multigeneration system, thermodynamic analyses and parametric studies are performed, revealing that the energy and exergy efficiencies of the whole plant are found to be 69.08% and 65.42%. In addition, ammonia and hydrogen production rates have been found to be 0.2462 kg/s and 0.0631 kg/s for the methane fuel mass flow rate of 1.51 kg/s. Also, the effects of the reference temperature, pinch point temperature of superheater, combustion chamber temperature, gas turbine input pressure, and mass flow rate of fuel on numerous parameters and performance of the plant are investigated.  相似文献   
6.
In this article, an internal-reforming solid oxide fuel cell–gas turbine (IRSOFC–GT) hybrid system is modeled and analyzed from thermal (energy and exergy), economic, and environmental points of view. The model is validated using available data in the literature. Utilizing the genetic algorithm optimization technique, multi-objective optimization of modeled system is carried out and the optimal values of system design parameters are obtained. In the multi-objective optimization procedure, the exergy efficiency and the total cost rate of the system (including the capital and maintenance costs, operational cost (fuel cost), and social cost of air pollution for CO, NOx, and CO2) are considered as objective functions. A sensitivity analysis is also performed in order to study the effect of variations of the fuel unit cost on the Pareto optimal solutions and their corresponding design parameters. The optimization results indicate that the final optimum design chosen from the Pareto front results in exergy efficiency of 65.60% while it leads to total cost of 3.28 million US$ year−1. It is also demonstrated that the payback time of the chosen design is 6.14 years.  相似文献   
7.
This paper is concerned with the energy and exergy analyses in the drying process of non-hygroscopic porous packed bed by combined multi-feed microwave-convective air and continuous belt system (CMCB). Most importantly, this work focused on the investigation of drying phenomena under industrialized microwave processing. In this analysis, the effects of the drying time, hot-air temperature, porous structure (F-Bed and C-Bed) and location of magnetron on overall drying kinetics and energy utilization ratio (EUR) were evaluated in detail. The results showed that using the continuous microwave application technique had several advantages over the conventional method such as shorter processing times, volumetric dissipation of energy throughout a product with higher energy utilization and less exergy efficiency in drying process. The results presented here provided fundamental understanding for drying process using CMCB in industrial size.  相似文献   
8.
In this paper, thermodynamic analysis is carried out for a geothermal Kalina cycle employed in Husavic power plant. Afterwards, the optimum operating conditions in which the cycle is at its best performance are calculated. In order to reach the optimum thermal and exergy efficiencies of the cycle, Artificial Bee Colony (ABC) algorithm, a new powerful multi-objective and multi-modal optimization algorithm, is conducted. Regarding the mechanism of ABC algorithm, convergence speed and precision of solutions have been remarkably improved when compared to those of GA, PSO and DE algorithms. Such a relative improvement is indicated by a limit parameter and declining probability of premature convergence. In this research, exergy efficiency including chemical and physical exergies and thermal efficiency are chosen as the objective functions of ABC algorithm where optimum values of the efficiencies for the Kalina cycle are found to be 48.18 and 20.36%, respectively, while the empirical thermal efficiency of the cycle is about 14%. At the optimum thermal and exergy efficiencies, total exergy destruction rates are respectively 4.17 and 3.48 MW. Finally, effects of the separator inlet pressure, temperature, basic ammonia mass fraction and mass flow rate on the first and second law efficiencies are investigated.  相似文献   
9.
A system based a fluidized bed gasifier with steam as a gasifying agent is investigated in details. Comparing the synthesis of gas compositions with experimental data available in the literature is used to validate the model. The synthesis of gas composition and efficiencies of the system is investigated respect to different biomasses considered as gasification fuels. The results indicate that the molar fractions of hydrogen and carbon dioxide are increased and the molar fraction of carbon monoxide is reduced with steam to biomass ratio (STBR). The hydrogen and cold gas efficiencies are improved with decreasing STBR. Hydrogen, cold gas, and exergy efficiencies are enhanced with temperature. The results illuminate that pine sawdust and straw have the highest hydrogen production and legume straw produces the lowest CO molar fraction. Straw has the highest hydrogen efficiency, eucalyptus and straw have the highest cold gas efficiency, and eucalyptus has the highest exergy efficiency. A systematical analytical hierarchy process (AHP)/technique for order preferences by similarity to ideal solution (TOPSIS) couple method are utilized to select the best alternative. The results illuminate that eucalyptus, straw, and pine sawdust are the best candidates, respectively as gasification fuel based on the considered criteria.  相似文献   
10.
The conventional hydrogen production methods, primarily steam methane reforming and coal gasification, produce massive amounts of greenhouse gas emissions which significantly cause impacts on the environment. An alternative hydrogen production method is high-temperature electrolysis using Solid Oxide Electrolyzer that combines both high conversion efficiency and saleable high purity hydrogen production. The produced hydrogen can feed the various industrial processes at different scales in addition to offering an environmentally friendly storage option. The scope of this paper is to examine the economic feasibility of this technology through the utilization of the exergoeconomic concept, which traces the flow of exergy through the system and price both waste and products. Therefore, a standalone solid oxide electrolyzer of a 1MWe is considered for hydrogen production using renewably generated electricity. Having the detailed exergy analysis conducted in earlier studies, the focus of this article is on the costing of each exergy stream to determine the exergy cost and the potential changes outcomes as a result of the system operating or design parameters optimization. It is found that the cost of hydrogen production through the modular high-temperature electrolyzer varies between $3-$9/kg with an average of about $5.7/kg, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号