首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1748篇
  免费   82篇
  国内免费   46篇
电工技术   15篇
综合类   49篇
化学工业   539篇
金属工艺   119篇
机械仪表   83篇
建筑科学   151篇
矿业工程   18篇
能源动力   167篇
轻工业   34篇
水利工程   10篇
石油天然气   22篇
武器工业   1篇
无线电   83篇
一般工业技术   492篇
冶金工业   31篇
原子能技术   17篇
自动化技术   45篇
  2023年   47篇
  2022年   55篇
  2021年   61篇
  2020年   59篇
  2019年   64篇
  2018年   50篇
  2017年   51篇
  2016年   45篇
  2015年   35篇
  2014年   79篇
  2013年   108篇
  2012年   99篇
  2011年   146篇
  2010年   121篇
  2009年   143篇
  2008年   88篇
  2007年   120篇
  2006年   78篇
  2005年   77篇
  2004年   46篇
  2003年   45篇
  2002年   43篇
  2001年   34篇
  2000年   28篇
  1999年   24篇
  1998年   19篇
  1997年   18篇
  1996年   14篇
  1995年   16篇
  1994年   10篇
  1993年   7篇
  1992年   2篇
  1991年   9篇
  1990年   9篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1951年   2篇
排序方式: 共有1876条查询结果,搜索用时 15 毫秒
1.
A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.  相似文献   
2.
The slight-alkalization of generator internal cooling water (GICW) is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator. CO2 inleakage is increasingly identified as a potential security risk for GICW system. In this paper, the influence of CO2 inleakage on the slight-alkalization of GICW was theoretically discussed. Based on the equilibriums of the CO2-NaOH-H2O system, CO2 inleakage saturation was derived to quantify the amount of the dissolved CO2 in GICW. This parameter can be directly calculated with the measured conductivity and the [Na+] of GICW. The influence of CO2 inleakage on the slight-alkalization conditioning of GICW and the measurement of its water quality parameters were then analyzed. The more severe the inleakage, the narrower the water quality operation ranges of GICW, resulting in the more difficult the slight-alkalization conditioning of GICW. The temperature calibrations of the conductivity and the pH value of GICW show non-linear correlations with the amount of CO2 inleakage and the NaOH dosage. This study provides insights into the influence of CO2 inleakage on the slight-alkalization of GICW, which can serve as the theoretical basis for the actual slight-alkalization when CO2 inleakage occurs.  相似文献   
3.
Removal by absorptive ceramic membranes can simultaneously absorb and separate metal ions from water. Alumina/yttria‐stabilized zirconia (Al2O3/YSZ) hollow‐fiber membranes, fabricated using phase inversion and sintering process, were deposited with iron oxide by an in‐situ hydrothermal process. The results showed that α‐Fe2O3 was produced and incorporated across the membranes. A reduction in flux was recorded with the deposition of α‐Fe2O3. However, it improved the adsorption capacity for heavy metal adsorption. The adsorption‐separation test demonstrated that the optimized membrane is able to completely remove Pb(II) ions after two hours.  相似文献   
4.
An intervening barrier for photocatalytic water decomposition and pollutant degradation is the frustratingly quick recombination of e - h+ pairs. Delicate design of heterojunction photocatalysts by coupling the semiconductors at nanoscale with well-matched geometrical and electronic alignments is an effective strategy to ameliorate the charge separation. Here a facile and environment-friendly l-cysteine-assisted hydrothermal process under weakly alkaline conditions is demonstrated for the first time to fabricate ZnIn2S4/In(OH)3 hollow microspheres with intimate contact, which are verified by XRD, SEM, (HR)TEM, XPS, N2 adsorption-desorption, UV–Vis DRS and photoluminescence spectra. ZnIn2S4/In(OH)3 heterostructure (L-cys/Zn2+ = 4, molar ratio) with a band-gap of 2.50 eV, demonstrates the best photocatalytic performance for water reduction and MB degradation under visible light, outperforming its counterparts (In(OH)3 and ZnIn2S4). The excellent activity of ZnIn2S4/In(OH)3 heterostructure arises from the intercrossed band-edge positions as well as the unique hollow structure with large surface area and wide pore-size distribution, which are beneficial for the efficient charge migration from bulk to surface as well as at the interface between ZnIn2S4 and In(OH)3. This work provides an efficient and eco-friendly strategy for one-pot synthesis of heterostructured composites with intimate contact for photocatalytic application.  相似文献   
5.
Formation of cobalt sulfide hollow nanocrystals through a mechanism similar to the Kirkendall Effect has been investigated in detail. It is found that performing the reaction at > 120 °C leads to fast formation of a single void inside each shell, whereas at room temperature multiple voids are formed within each shell, which can be attributed to strongly temperature‐dependent diffusivities for vacancies. The void formation process is dominated by outward diffusion of cobalt cations; still, the occurrence of significant inward transport of sulfur anions can be inferred as the final voids are smaller in diameter than the original cobalt nanocrystals. Comparison of volume distributions for initial and final nanostructures indicates excess apparent volume in shells, implying significant porosity and/or a defective structure. Indirect evidence for fracture of shells during growth at lower temperatures was observed in shell‐size statistics and transmission electron microscopy images of as‐grown shells. An idealized model of the diffusional process imposes two minimal requirements on material parameters for shell growth to be obtainable within a specific synthetic system.  相似文献   
6.
We report a general template strategy for rational fabrication of a new class of nanostructured materials consisting of multicore shell particles. Our approach is demonstrated by encapsulating Au or Pt nanoparticles in silica shells. Other superstructures of these hollow shells, like dimers, trimers, and tetramers can also be formed by nanoparticle‐mediated self‐assembly. We have also used the as‐prepared multicore Au–silica hollow particles to perform the first studies of Ostwald ripening in confined microspace, in which chloride was found to be an efficient mediating ligand. After treatment with aqua regia, Au–Cl complex is formed inside the shell, and is found to be very active under in situ transmission electron microscopy observations while confined in a microcell. This aspect of the work is expected to motivate further in situ studies of confined crystal growth.  相似文献   
7.
Hybrid hollow multi-walled carbon nanotubes (MWCNTs)/polyelectrolytes (PE) nanofibers were prepared by a combination of the electrospinning method and layer-by-layer (LbL) technique. The mixed polystyrene (PS)/MWCNTs nanofibers were obtained by electrospinning method, which were employed as templates to self-assembly multilayered polyelectrolytes by LbL technique. Hollow MWCNTs/PE nanofibers were obtained by selectively removed part of the template: PS, which is confirmed by Raman spectra, transmission electron microscopy (TEM) and scanning electron microscopy (SEM).  相似文献   
8.
以C9油与甲基丙烯酰氧乙基三甲基氯化胺的共聚物P(C9-DMC)为乳化剂制备苯/丙阳离子乳胶粒,并以其为模板,利用直接包覆法制备了由17 nm左右微晶体堆成的ZrO2空心微球。所制得的样品采用FT-IR、XRD、TEM和SEM等进行了表征。  相似文献   
9.
Submicrometer-sized titania hollow spheres with tunable shell thickness and smooth surfaces have been successfully synthesized by employing sulfonated polystyrene (PS) latex particles as a template in sol-gel method. The structure of the particles was characterized by scanning electron microscopy and transmission electron microscopy. The shell thickness was readily tuned by altering the concentration of titanium tetrabutoxide (TBOT) in ethanol solutions. The surface roughness as well as the shell thickness has the tendency to increase with the increase in the concentration of TBOT. The diameter of the hollow spheres was on the average of 20-26% smaller than the diameter of template PS latex particles. Some titania fragments were also observed for the sample with the highest TBOT concentration.  相似文献   
10.
Interfacial-initiated polymerization of styrene (St) was carried out in inversed emulsion with cumene hydroperoxide (CHPO) and ferrous sulfate (FeSO4)/disodium ethylenediaminetetraacetate (NaEDTA)/sodium formaldehyde sulfoxylate (SFS) as the redox initiation system. The water-soluble Fe2+-NaEDTA-SFS acted as the reducing component and the oil-soluble CHPO as the oxidant component of the redox initiation system. Therefore, the primary radicals were produced mainly at the oil/water interface to initiate the polymerization of St. Thus, sub-micrometer hollow polystyrene (PSt) spheres were obtained by one-stage polymerization, which was supported by the techniques of transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号