首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
化学工业   1篇
机械仪表   2篇
能源动力   31篇
自动化技术   1篇
  2023年   3篇
  2022年   2篇
  2020年   1篇
  2019年   1篇
  2014年   3篇
  2012年   4篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2004年   3篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
Cyclic variability is a factor adversely affecting engine performance. In this paper a cyclic moving average regulation approach to cylinder pressure at top dead center (TDC) is proposed, where the ignition time is adopted as the control input. The dynamics from ignition time to the moving average index is described by ARMA model. With this model, a one-step ahead prediction-based minimum variance controller (MVC) is developed for regulation. The performance of the proposed controller is illustrated by experiments with a commercial car engine and experimental results show that the controller has a reliable effect on index regulation when the engine works under different fuel injection strategies, load changing and throttle opening disturbance.  相似文献   
2.
The first application of Laser Induced Thermal Gratings Spectroscopy (LITGS) for precision thermometry in a firing GDI optical engine is reported. Crank-angle resolved temperature values were derived from LITGS signals generated in fuel vapour with a pressure dependent precision in the range 0.1–1.0% allowing differences in evaporative or charge cooling effects arising from a variety of ethanol and methanol blends with a model gasoline fuel to be quantified. In addition, fluctuations in temperature arising from cyclic variations in compression were directly detected and measured.  相似文献   
3.
Homogeneous charge compression ignition (HCCI) combustion mode provides very low NOx and soot emissions; however, it has some challenges associated with hydrocarbon (HC) emissions, fuel consumption, difficult control of start of ignition and bad behaviour to high loads. Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production in diesel and HCCI combustion mode. However EGR has different effects on combustion and emissions, which are difficult to distinguish. This work is intended to characterize an engine that has been modified from the base diesel engine (FL1 906 DEUTZ-DITER) to work in HCCI combustion mode. It shows the experimental results for the modified diesel engine in HCCI combustion mode fueled with commercial diesel fuel compared to the diesel engine mode. An experimental installation, in conjunction with systematic tests to determine the optimum crank angle of fuel injection, has been used to measure the evolution of the cylinder pressure and to get an estimate of the heat release rate from a single-zone numerical model. From these the angle of start of combustion has been obtained. The performances and emissions of HC, CO and the huge reduction of NOx and smoke emissions of the engine are presented. These results have allowed a deeper analysis of the effects of external EGR on the HCCI operation mode, on some engine design parameters and also on NOx emission reduction.  相似文献   
4.
The purpose of this study was to analyze the exhaust emissions of DME fuel through experimental and numerical analyses of in-cylinder spray behavior. To investigate this behavior, spray characteristics such as the spray tip penetration, spray cone angle, and spray targeting point were studied in a re-entrant cylinder shape under real combustion chamber conditions. The combustion performance and exhaust emissions of the DME-fueled diesel engine were calculated using KIVA-3V. The numerical results were validated with experimental results from a DME direct injection compression ignition engine with a single cylinder.The combustion pressure and IMEP have their peak values at an injection timing of around BTDC 30°, and the peak combustion temperature, exhaust emissions (soot, NOx), and ISFC had a lower value. The HC and CO emissions from DME fuel showed lower values and distributions in the range from BTDC 25° to BTDC 10° at which a major part of the injected DME spray was distributed into the piston bowl area. When the injection timing advanced to before BTDC 30°, the HC and CO emissions showed a rapid increase. When the equivalence ratio increased, the combustion pressure and peak combustion temperature decreased, and the peak IMEP was retarded from BTDC 25° to BTDC 20°. In addition, NOx emissions were largely decreased by the low combustion temperature, but the soot emissions increased slightly.  相似文献   
5.
The influence of iron nanoparticle (INP) addition (75 ppm) and hydrogen enrichment (10 lpm) with waste cooking palm biodiesel blend (WCB) on a CRDI diesel engine is evaluated. A blend of 20% WCB and 80% diesel is used, and the dosing level of INP has been kept at 75 ppm, which has been decided based on the oxygen content of biodiesel. Results indicate that the combination of H2 enrichment and INP addition improves the BTE and BSFC of biodiesel blends as that of diesel. A maximum improvement of BTE of 7.1% than that of diesel is obtained at 90% loading. The combined impact of better hydrogen combustion characteristics and improved air-fuel mixing with nanoparticles reduces CO and HC emissions by 37.5% and 41.8%, respectively, for the WCB fuel sample. However, NOX emission shows an elevation of 27.4% compared to diesel. Combustion parameters, namely ICP (80.1 bar) and HRR (89.5 J/˚CA) indicate an improvement of 5.3% and 6.7% compared to diesel for WCB + INP + H2. This is owing to the combination of hydrogen's rapid flame speed and INP-added biodiesel's increased thermal conductivity.  相似文献   
6.
Modeling and optimization of liquid hydrogen (LH2) pumps require accurate in-cylinder heat transfer correlations. However, the applicability of existing correlations based on gas mediums to LH2 remains to be verified. In this paper, the unsteady heat transfer and fluid flow in a closed LH2 pump cylinder are numerically studied by adopting the gas spring model. The phase shifts and temperature distribution in the closed pump cylinder are investigated. LH2 is less affected by in-cylinder heat transfer and has a more uniform temperature distribution compared to nitrogen gas, while a low-temperature zone appears near the piston face at 120 rpm. Finally, the validity of Lekic's correlation in predicting the heat flux of the LH2 compression process in the closed pump cylinder is verified, and the efficiency decrement versus rotational speed is analyzed based on the correlation. This work would be useful for selecting a proper in-cylinder heat transfer model for predicting the thermodynamic process in reciprocating LH2 pumps.  相似文献   
7.
The paper is concerned with the study of the effects of the in-cylinder and regenerator heat transfer characteristics of a single-acting opposed-piston Stirling engine, with heater and cooler both omitted, for which a simulation model has been developed. The engine thermodynamic cycle is divided into a number of time-steps, and a system of nonlinear ordinary differential equations, which describe the energy balances over the three basic control volumes (hot and cold cylinders and regenerator), is solved numerically. Empirical correlations are used to determine the instantaneous heat transfer coefficients in the regenerator (flow across a porous medium) and inside the cylinder space (gas confined in a cylindrical volume with a moving boundary). Numerical results from the model are presented.  相似文献   
8.
利用实测发动机瞬态转速波动估计缸内燃气压力   总被引:2,自引:0,他引:2  
本文针对从瞬态曲轴转速波动估计出缸内燃气压力扭矩后,由于有不可预见性问题,难以用动力学方法估计出缸内燃气压力的现象,研究并发现在一定条件下平均指示压力和放热规律之间存在一一对应的关系。在提出了标准放热规律的概念后,给出了由实测瞬态曲轴转速波动估计平均指示压力,由其确定放热规律,最终估计出缸内燃气压力。  相似文献   
9.
介绍了运用光电编码器和NI公司软硬件开发的缸内压力测量系统,系统实现了缸内压力的等角度采集,采集的缸内压力值不受转速波动影响。基于Labview编写的测试程序具有人机交互界面友好,简单实用,集成度高等特点。试验结果表明,该系统简单可靠,为测量缸内压力提供了一种新的方法。  相似文献   
10.
This paper presents the combustion characteristics of a naturally aspirated spark ignition engine, intended for installation in vehicles, fueled with different hydrogen and methane blends. The experimental tests were carried out in a wide range of speeds at equivalence ratios of 1, 0.8 and 0.7 and at full load. The ignition timing was maintained for each speed, independently of the equivalence ratio and blend used as fuel. Four methane-hydrogen blends were used. In-cylinder pressure, mass fraction burned, heat released and cycle-by-cycle variations were analyzed as representative indicators of the combustion quality. It was observed that hydrogen enrichment of the blend improve combustion for the ignition timing chosen. This improvement is more appreciable at low speeds, because at high speeds hydrogen effect is attenuated by the high turbulence. Also, hydrogen addition allowed the extension of the LOL, enabling the engine to run stable in points where methane could not be tested. The main inconvenience detected was the high NOx emissions measured, especially at stoichiometric conditions, due mainly to the increment in the combustion temperature that hydrogen produces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号