首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
能源动力   1篇
  2023年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Seawater electrolysis has become an efficient method which makes full use of natural resources to produce hydrogen. However, it suffers high energy cost and chloride corrosion. Herein, we first present a Ni2P/Co(PO3)2/NF heterostructure in which Co(PO3)2 with the nano-rose morphology in-situ grown on the rough Ni2P/NF. The unique 3D nano-rose structure and the optimized electronic structure of the heterostructure enable Ni2P/Co(PO3)2/NF super-hydrophilic and super-aerophobic characteristics, and highly facilitate hydrogen evolution reaction (HER) kinetics in alkaline fresh water, alkaline seawater and even industrial wastewater at large current density, which is rarely reported. Significantly, at large current densities, Ni2P/Co(PO3)2/NF only requires overpotentials of 217 and 307 mV for HER to achieve 1000 mA cm−2 in alkaline fresh water and alkaline seawater, respectively, and requires an overpotential of 469 mV for HER to deliver 500 mA cm−2 in industrial wastewater. Furthermore, the overall seawater splitting system in the two-electrode electrolyzer only requires voltage of 1.98 V to drive 1000 mA cm−2, which also demonstrates significant durability to keep 600 mA cm−2 for at least 60 h. This study opens a new avenue of designing high efficiency electrocatalysts for hydrogen production at large current densities in alkaline seawater and industrial wastewater.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号