首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   7篇
  国内免费   4篇
综合类   11篇
化学工业   2篇
建筑科学   18篇
矿业工程   12篇
能源动力   5篇
水利工程   25篇
冶金工业   1篇
原子能技术   1篇
自动化技术   4篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   6篇
  2013年   4篇
  2012年   3篇
  2011年   12篇
  2010年   6篇
  2009年   5篇
  2008年   8篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2002年   2篇
  1997年   1篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
1.
以甘肃省合作市某尾矿库库区作为研究区,应用Visual MODFLOW建立了地下水水流模型和溶质运移模型,模拟了4种特征污染物在尾矿库无防渗和尾矿库人工防渗层破损两种非正常工况下的运移情况。数值模拟预测了污染物的影响范围、超标范围和最大运移距离。由预测结果可知:污染物主要沿水流方向运移,对水环境的影响随时间逐渐增大;氨氮和总磷对水环境的影响较大,总砷和六价铬影响较小;两种工况中,尾矿库无防渗对水环境造成的影响更为恶劣。  相似文献   
2.
Modeling of coastal groundwater systems is a challenging problem due to their highly dynamic boundary conditions and the coupling between the equations for groundwater flow and solute transport. A growing number of publications on aquifers subject to tides have demonstrated various modeling approaches, ranging from analytical solutions to comprehensive numerical models. The United States Geological Survey code SEAWAT has been a popular choice in studies of this type. Although SEAWAT allows the incorporation of time-variant boundary conditions, the implementation of tidal boundaries is not straightforward, especially when a seepage face develops during falling tide. Here, a new package is presented, called the periodic boundary condition (PBC) package, that can be incorporated into MODFLOW and SEAWAT to overcome the difficulties encountered with tidal boundaries. It dynamically updates the boundary conditions for head and concentration during the simulation depending on a user-defined tidal signal and allows for the development of a seepage face. The package has been verified by comparing it to four different published models of tidally influenced groundwater systems of varying complexity. Excellent agreement was obtained in all cases. The new package is an important extension to the existing capabilities of MODFLOW and SEAWAT with respect to simulating periodic boundary conditions.  相似文献   
3.
灌区地表水—地下水耦合模型的构建   总被引:3,自引:1,他引:2  
刘路广  崔远来 《水利学报》2012,43(7):826-833
为了定量描述灌区水平衡要素及其转化关系,构建了灌区地表水-地下水分布式模拟耦合模型。通过改进SWAT模型的稻田及旱作物水分循环、蒸发蒸腾量和渠系渗漏计算等模块,建立了灌区地表水分布式模拟模型;以SWAT模型中的水文响应单元(HRU)和MODFLOW模型中的有限差分网格(cells)作为基本交换单元,将改进SWAT模型的地下水补给量计算值加载到MODFLOW模型的地下水补给模块,实现了灌区地表水-地下水分布式模拟模型的耦合。耦合模型在柳园口灌区的应用结果表明,该模型能够准确模拟和预测灌区地表水和地下水的动态变化,为灌区水管理提供了科学依据。  相似文献   
4.
Lab experiment and mathematical simulation Modular three dimensional finite difference groundwater (MODFLOW) were performed in a soil tank to simulate the hydrogeochemical interaction between lake and typical unconfined aquifer. Results show that the velocity decreases exponentially with the transect distance on seepage face. The maximal velocity occurs at the top point of seepage face. The obliquity of seepage face has a great influence on the maximum and distribution of seepage velocity. With the increase of the obliquity of seepage face, the maximal velocity decreases quickly and the velocity distribution becomes much more even. Most of groundwater flow and pollutant flux discharges through a narrow portion near the top of seepage face. The flow and mass concentrated in the narrow portion increase with the decrease of the obliquity of seepage face. These will benefit to design a reasonable and economical scenario to manage lakeshore and to control the pollution of lake water near lakeshore.  相似文献   
5.
It is challenging to simulate stream-aquifer interactions for the wide channel streams with the existing stream routing packages of MODFLOW. To overcome this limitation, a Cross-Section streamflow Routing (CSR) package is developed to simulate the streamflow and the interaction between streams and aquifers for the stream with a width larger than the MODFLOW grid size. In the CSR package, streams are divided into stream segments which are formed by two consecutive cross-sections. A cross-section is described by a number of streambed points that determine the geometry and hydraulic properties of the streambed. The stream water depth and streamflow at the cross-sections are related by the Single Channel method, the Divided Channel method, a data table or a power function. A rapid algorithm is used to compute the submerged area of the MODFLOW grid. The streambed conductance of a grid cell is computed based on its submerged area, streambed hydraulic conductivity and thickness. Stream-aquifer seepage is subsequently estimated as the product of the streambed conductance and difference between the stream stage and groundwater hydraulic head. Stream-aquifer seepage is treated as lateral flow in the streamflow routing computation with the Muskingum-Cunge method or mass conservation method. A hypothetical problem is established to test the capabilities of the CSR package with steady- and transient-state models. The results compare favorably with the SFR2 package and the HEC-RAS model. However, significant difference in flood wave attenuation is observed between the CSR package and the SFR2 package. It proves that the CSR package is capable of simulating the variation of stream-aquifer interactions in both space and time efficiently. The CSR package represents a certain improvement over previous MODFLOW streamflow packages by providing the efficient cross-section based computation and the unique capability of simulating streambed heterogeneity in longitudinal and transverse directions.  相似文献   
6.
数值模拟方法是评价地下水资源、模拟地下水水流和溶质运移的主要方法和手段之一。本次研究应用Visual MODFLOW建立了研究区地下水三维水流及溶质运移模型,并应用其中的MODPATH模块模拟了地下水中水质点的运移轨迹,分析了由于过量开采而形成地下水水位降落漏斗后,研究区地下水溶质的运移规律,提出了控制和改善地下水水质的方法。  相似文献   
7.
In recent years, as a result of climate change as well as rainfall reduction in arid and semi‐arid regions, modelling qualitative and quantitative parameters belonging to aquifers has become crucially important. In Iran, as aquifers are treated as the most commonly used drinking water resources, modelling their qualitative and quantitative parameters is enormously important. In this paper, for the first time, values of salinity, total dissolved solids (TDS), groundwater level (GWL) and electrical conductivity (EC) of the Arak Plain, located in Markazi Province, Iran, are simulated by means of four modern artificial intelligence models including extreme learning machine (ELM), wavelet extreme learning machine (WELM), online sequential extreme learning machine (OSELM) and wavelet online sequential extreme learning machine (WOSELM) as well as the MODFLOW software for a 15‐year period monthly. To develop the hybrid artificial intelligence models, the wavelet is employed. First, the effective lags in estimating the qualitative and quantitative parameters of the groundwater are identified using the autocorrelation function (ACF) and the partial autocorrelation function (PACF) analysis. After that, four different models are developed by the selected input combinations and also the ACF and the PACF in the form of different lags for each of ELM, WAELM, OSELM and WOSELM methods. Then, the superior models in simulating the groundwater qualitative and qualitative parameters are detected by conducting a sensitivity analysis. To forecast the electrical conductivity (EC) by the best WOSELM model, the values of the Nash–Sutcliffe efficiency coefficient (NSC), Mean Absolute Error (MAE) and the scatter index (SI) are obtained to be 0.991, 18.005 and 4.28E‐03, respectively. In addition, the most effective lags in estimating these parameters are introduced. Subsequently, the results found by the MODFLOW model are compared with those of the artificial intelligence models and it is concluded that the latter are more accurate. For instance, the scatter index and Nash–Sutcliffe efficiency coefficient values calculated by WOSELM for TDS, respectively, are 5.34E‐03 and 0.991. Finally, an uncertainty analysis is conducted to evaluate the performance of different numerical models. For example, MODFLOW has an underestimated performance in simulating the salinity parameter.  相似文献   
8.
The radial collector well, an important water drainage construction, has been widely applied to the tailings dam. Chemical clogging frequently occurs around the vertical shaft in radial collector well due to enough dissolved oxygen and some heavy metals in groundwater flow of tailings dam. Considering the contribution of water discharge from both vertical shaft and horizontal screen laterals and chemical clogging occurring around vertical shaft well, a new model was developed on the basis of Multi-Node Well (MNW2) package of MODFLOW. Moreover, two cases were calculated by the newly developed model. The results indicate that the model considering chemical clogging occurring around the vertical shaft well is reasonable. Owing to the decrease in hydraulic conductivity caused by chemical clogging, the groundwater level in dam body increases constantly and water discharge of radial collector well declines by 10-15%. For ordinary vertical well, it decreases by 30%. Therefore, chemical clogging occurring around radial collector well can arouse increases of groundwater level, and influence dambody safety.  相似文献   
9.
为确定郎家水源地20年内地下水水质、水量是否满足供水要求,构建了数学模型并运用Visual MODFLOW进行了模拟预测.模拟预测结果表明,所建立的数学模型能够反映真实的地下水状况,当浑河来水为Ⅲ类水质时,郎家水源地水质能够满足供水要求,但是应合理控制浑河来水,以保持水源地水质.  相似文献   
10.
泉域地下水资源管理信息系统   总被引:1,自引:1,他引:0  
本文利用地理信息系统技术(GIS)、VTK三维显示技术、数据库技术、MODFLOW地下水模拟模型和人工神经网络模型构建安阳市小南海泉域地下水资源管理信息系统,实现数据管理、地下水动态模拟、前景预测及可视化等功能.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号