首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28562篇
  免费   1657篇
  国内免费   862篇
电工技术   391篇
综合类   1046篇
化学工业   14397篇
金属工艺   1476篇
机械仪表   566篇
建筑科学   273篇
矿业工程   334篇
能源动力   2835篇
轻工业   399篇
水利工程   20篇
石油天然气   5994篇
武器工业   106篇
无线电   413篇
一般工业技术   1823篇
冶金工业   649篇
原子能技术   167篇
自动化技术   192篇
  2024年   43篇
  2023年   328篇
  2022年   677篇
  2021年   810篇
  2020年   779篇
  2019年   800篇
  2018年   720篇
  2017年   731篇
  2016年   813篇
  2015年   771篇
  2014年   1480篇
  2013年   1475篇
  2012年   1526篇
  2011年   1867篇
  2010年   1415篇
  2009年   1580篇
  2008年   1440篇
  2007年   1662篇
  2006年   1626篇
  2005年   1424篇
  2004年   1274篇
  2003年   1242篇
  2002年   1035篇
  2001年   988篇
  2000年   862篇
  1999年   730篇
  1998年   618篇
  1997年   430篇
  1996年   465篇
  1995年   339篇
  1994年   298篇
  1993年   212篇
  1992年   156篇
  1991年   125篇
  1990年   103篇
  1989年   74篇
  1988年   42篇
  1987年   23篇
  1986年   12篇
  1985年   22篇
  1984年   13篇
  1983年   12篇
  1982年   10篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1951年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Metals and alloys forming reversible hydrides with hydrogen gas are potential building blocks for compact, solid state hydrogen storage systems. Based on the materials’ thermodynamic characteristics, their use as temperature-swing gas compression and delivery systems in the hydrogen economy is also possible. Given the wide variety of materials developed and tested at laboratory and pilot scales, a harmonized method of selecting the feasible material(s) for a particular real-life application is required. This study proposes a system selection framework based on a normalized, multi-criteria metric. Using calculated values of multi-criteria metric, multi-criteria screening and ranking of potential materials has been demonstrated for a particular use case. It is found that the alloy TiMn1.52 having value of additive metric between 0.25 and 0.35 represents the best material for a single stage system. The alloy pair CaNi5–Ti1.5CrMn represents the best alternative for a two-stage system with additive metric values between 0.63 and 0.82. Energy and economic characteristics of the metal hydride gas compression and delivery systems are evaluated and compared with an equivalent mechanical compression system producing the same final effect (i.e., delivery of a given quantity of gas at a defined pressure).  相似文献   
2.
Due to stringent environmental regulations and the limited resources of fossil-based fuels, there is an urgent demand for clean and eco-friendly energy conversion devices. These criteria appear to be met by hydrogen proton exchange membrane fuel cells (PEMFCs). PEMFCs have attracted tremendous attention on account of their excellent performance with tunable operability and good portability. Nonetheless, their practical applications are hugely influenced by the scarcity and high cost of platinum (Pt) used as electrocatalysts at both cathode and anode. Pt is also susceptible to easy catalyst poisoning. Herein, this paper reviews the progress of the research regarding the development of electrocatalysts practically used in hydrogen PEMFCs, where the corner-stone reactions are cathodic oxygen reduction reaction (ORR) and anodic hydrogen oxidation reaction (HOR). To reduce the costs of PEMFCs, lessening or eliminating the use of Pt is of prime importance. For current and forthcoming laboratory/large-scale PEMFCs, there is much interest in developing substitute catalysts based on cheaper materials. As such are non-platinum (non-Pt), non-platinum group metals (non-PGMs), metal oxides, and non-metal electrocatalysts. Hence, high-performance, state-of-the-art, and novel structured electrocatalysts as replacements for Pt are needed.  相似文献   
3.
Efficient and sustainable Janus catalysts toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are highly desirable for future hydrogen production via water electrolysis. Herein we report an active Janus electrocatalyst of amorphous-crystalline cobalt-molybdenum bimetallic phosphide heterostructured nanosheets on nickel foam (CoMoP/CoP/NF) for efficient electrolysis of alkaline water. As-reported CoMoP/CoP/NF consists of amorphous bimetal phosphide nanosheets doped with crystalline CoMoP/CoP heterostructured nanoparticles on NF. It can efficiently catalyze both HER (η = 127 mV@100 mA cm?2) and OER (η = 308 mV@100 mA cm?2) in alkaline electrolyte with long-term durability. Serving as anode and cathode of water electrolyzer, CoMoP/CoP/NF generates electrolytic current of 10, 50 and 100 mA cm?2 at low voltage of 1.50, 1.59, and 1.67 V, respectively.  相似文献   
4.
Steam reforming of liquid hydrocarbon fuels is an appealing way for the production of hydrogen. In this work, the Rh/Al2O3 catalysts with nanorod (NR), nanofiber (NF) and sponge-shaped (SP) alumina supports were successfully designed for the steam reforming of n-dodecane as a surrogate compound for diesel/jet fuels. The catalysts before and after reaction were well characterized by using ICP, XRD, N2 adsorption, TEM, HAADF-STEM, H2-TPR, CO chemisorption, NH3-TPD, CO2-TPD, XPS, Al27 NMR and TG. The results confirmed that the dispersion and surface structure of Rh species is quite dependent on the enclosed various morphologies. Rh/Al2O3-NR possesses highly dispersed, uniform and accessible Rh particles with the highest percentage of surface electron deficient Rh0 active species, which due to the unique properties of Al2O3 nanorod including high crystallinity, relatively large alumina particle size, thermal stability, and large pore volume and size. As a consequent, Rh/Al2O3-NR catalyst exhibited superior catalytic activity towards steam reforming reactions and hydrogen production rate over other two catalysts. Especially, Rh/Al2O3-NR catalyst showed the highest hydrogen production rate of 87,600 mmol gfuel?1 gRh?1min?1 among any Rh-based catalysts and other noble metal-based catalysts to date. After long-term reaction, a significant deactivation occurred on Rh/Al2O3–NF and Rh/Al2O3-SP catalysts, due to aggregation and sintering of Rh metal particles, coke deposition and poor hydrothermal stability of nanofibrous structure. In contrast, the Rh/Al2O3-NR catalyst shows excellent reforming stability with negligible coke formation. No significantly sintering and aggregation of the Rh particles is observed after long-term reaction. Such great catalyst stability can be explained by the role of hydrothermal stable nanorod alumina support, which not only provides a unique environment for the stabilization of uniform and small-size Rh particles but also affords strong surface basic sites.  相似文献   
5.
The vanadium hydrides have better hydrogen storage capacity in comparison to the other metal hydrides. Although the structure of VH2 hydride has been reported, the structural stability, electronic and optical properties of VH2 hydride are unclear. To solve these problems, we apply the first-principles method to study the structural stability, electronic and optical properties of VH2 hydrides. Similar to the metal dihydrides, four possible VH2 hydrides such as the cubic (Fm-3m), tetragonal (I4/mmm), tetragonal (P42/mnm) and orthorhombic (Pnma) are designed. The result shows that the cubic VH2 hydride is a thermodynamic and dynamical stability. In particular, the tetragonal (I4/mmm) and the orthorhombic (Pnma) VH2 hydrides are firstly predicted. It is found that these VH2 hydrides show metallic behavior. The electronic interaction of V (d-state)-H (s-state) is beneficial to improve the hydrogen storage in VH2 hydride. In addition, the formation of V–H bond can improve the structural stability of VH2 hydride. Based on the analysis of optical properties, it is found that all VH2 hydrides show the ultraviolet response. Compared to the tetragonal and orthorhombic VH2 hydrides, the cubic VH2 hydride has better storage optical properties. Therefore, we believe that the VH2 hydride is a promising hydrogen storage material.  相似文献   
6.
The activity of catalysts with various sizes was compared in a fixed-bed Fischer–Tropsch reactor under similar operating conditions by determining the deactivation model. Catalyst size had no impact on the type of deactivation model. The smaller catalyst showed a smaller deactivation constant of catalyst (kd) and a lower deactivation rate in the initial stage. The decline in the activities of the catalyst with a mesh size of 40 was lower than the other catalysts, suggesting its higher long-term stability (ass). Larger catalyst sizes led to the fouling of carbon and heavy hydrocarbons, decreasing the specific surface of the catalyst, thus increasing the pore diffusion resistance and further decrementing the catalyst activities.  相似文献   
7.
The development of efficient and stable electrocatalysts is of great significance for improving water splitting. Among them, transition metal oxyhydroxides show excellent performance in oxygen evolution reactions (OER), but there are certain difficulties in direct preparation. Recently, Metal–organic frameworks (MOFs) as precatalysts or precursors have shown promising catalytic performance in OER and can be decomposed under alkaline conditions. Therefore, using a mild and controllable way to convert MOFs into oxyhydroxides and retaining the original structural advantages is crucial for improving the catalytic activity. Herein, a rapid electrochemical strategy is used to activate well-mixed MOFs to prepare Co/Ni oxyhydroxide nanosheets for efficient OER catalysts, and the structural transformation in this process was investigated in detail by using scanning electron microscope, X-ray diffraction, Raman, X-ray photoelectron spectroscopy and electrochemical methods. It is discovered that electrochemical activation can promote ligand substitution of well-mixed MOFs to form porous oxyhydroxide nanosheets and tune the electronic structure of the metal (Co and Ni), which can lead to more active site exposure and accelerate charge transfer. In addition, the change of structure also improves hydrophilicity, as well as benefiting from the strong synergistic effect between multiple species, the optimal a-MCoNi–MOF/NF has excellent OER performance and long-term stability. More obviously, the porous CoNiOOH nanosheets are formed in situ during electrochemical activation process through structural transformation and acts as the active centers. This work provides new insights for mild synthesis of MOFs derivatives and also provides ideas for the preparation of highly efficient catalysts.  相似文献   
8.
In the present study, metal-free catalysts for efficient H2 generation from NaBH4 methanolysis was produced for the first time from apricot kernel shells with two-step activation. The first stage of the two-stage activation includes the production of activated carbon with the KOH agent (AKOH), and the second stage includes hydrothermally HNO3 activation with oxygen doping (O doped AKOH + N). The hydrogen production rate (HGR) and the activation energy (Ea) of the reaction with the obtained metal-free catalyst (10 mg) were determined as 14,444 ml min?1 g?1 and 7.86 kJ mol?1, respectively. The structural and physical-chemical properties of these catalysts were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy), elemental CHNS analysis, FT-IR (Fourier transform infrared spectroscopy), and nitrogen adsorption analysis. Also, the reusability results of this metal-free catalyst for H2 production are promising.  相似文献   
9.
Hydrogen technology is widely considered a novel clean energy source, and electrolysis is an effective method for hydrogen evolution. Therefore, efficient hydrogen evolution reaction (HER) catalysts are urgently needed to replace precious metal catalysts and meet ecological and environmental protection standards. Herein, Ni–Mn–P electrocatalysts are synthesized using facile electrodeposition technology. The influence of the Mn addition on the catalytic behavior is studied by the comprehensive analysis of catalytic performance and morphology of the catalysts. Among them, the Ni–Mn–P0.01 catalyst exhibits small coral-like structures, greatly improving the adsorption and desorption of hydrogen ions and reducing the overpotential hydrogen evolution. Consequently, overpotential at 10 mA cm?2 electric current density is 113 mV, and the value of the Tafel slope achieves 74 mV/dec. Furthermore, the Ni–Mn–P catalyst shows long-time (20 h) stability at current densities of 10 and 60 mA/cm2. The results confirm that the synergistic effect of Ni, Mn, and P accelerates the electrochemical reaction. Meanwhile, the addition of manganese element can change the micromorphology of the catalyst, thereby exposing more active sites to participate in the reaction, enhancing water ionization, improving the catalytic performance. This study opens a new way toward improving the activity of the catalyst by adjusting Mn concentration during the electrodeposition process.  相似文献   
10.
Hydrogen is currently receiving significant attention as an alternative energy resource, and among the various methods for producing hydrogen, methanol steam reforming (MSR) has attracted great attention because of its economy and practicality. Because the MSR reaction is inherently activated over catalytic materials, studies have focused on the development of noble metal-based catalysts and the improvement of existing catalysts with respect to performance and stability. However, less attention has been paid to the modification and development of innovative MSR reactors to improve their performance and efficiency. Therefore, in this review paper, we summarize the trends in the development of MSR reactor systems, including microreactors and membrane reactors, as well as the various structured catalyst materials appropriate for application in complex reactors. In addition, other engineering approaches to achieve highly efficient MSR reactors for the production of hydrogen are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号