首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40978篇
  免费   1252篇
  国内免费   1174篇
电工技术   1005篇
技术理论   1篇
综合类   1149篇
化学工业   8214篇
金属工艺   6485篇
机械仪表   1190篇
建筑科学   666篇
矿业工程   369篇
能源动力   1800篇
轻工业   1989篇
水利工程   144篇
石油天然气   466篇
武器工业   194篇
无线电   2596篇
一般工业技术   9397篇
冶金工业   1939篇
原子能技术   416篇
自动化技术   5384篇
  2024年   181篇
  2023年   1346篇
  2022年   1102篇
  2021年   1527篇
  2020年   1411篇
  2019年   1307篇
  2018年   1255篇
  2017年   1350篇
  2016年   1813篇
  2015年   2407篇
  2014年   2827篇
  2013年   4060篇
  2012年   2014篇
  2011年   2798篇
  2010年   2473篇
  2009年   2330篇
  2008年   2013篇
  2007年   1983篇
  2006年   1452篇
  2005年   1350篇
  2004年   1186篇
  2003年   1180篇
  2002年   1120篇
  2001年   599篇
  2000年   473篇
  1999年   436篇
  1998年   305篇
  1997年   268篇
  1996年   209篇
  1995年   110篇
  1994年   127篇
  1993年   67篇
  1992年   51篇
  1991年   33篇
  1990年   44篇
  1989年   30篇
  1988年   22篇
  1987年   10篇
  1986年   15篇
  1985年   18篇
  1984年   24篇
  1983年   8篇
  1982年   14篇
  1981年   12篇
  1980年   10篇
  1979年   10篇
  1978年   3篇
  1977年   3篇
  1974年   5篇
  1958年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Due to the demand of miniaturization and integration for ceramic capacitors in electronic components market, TiO2-based ceramics with colossal permittivity has become a research hotspot in recent years. In this work, we report that Ag+/Nb5+ co-doped (Ag1/4Nb3/4)xTi1−xO2 (ANTOx) ceramics with colossal permittivity over a wide frequency and temperature range were successfully prepared by a traditional solid–state method. Notably, compositions of ANTO0.005 and ANTO0.01 respectively exhibit both low dielectric loss (0.040 and 0.050 at 1 kHz), high dielectric permittivity (9.2 × 103 and 1.6 × 104 at 1 kHz), and good thermal stability, which satisfy the requirements for the temperature range of application of X9R and X8R ceramic capacitors, respectively. The origin of the dielectric behavior was attributed to five dielectric relaxation phenomena, i.e., localized carriers' hopping, electron–pinned defect–dipoles, interfacial polarization, and oxygen vacancies ionization and diffusion, as suggested by dielectric temperature spectra and valence state analysis via XPS; wherein, electron-pinned defect–dipoles and internal barrier layer capacitance are believed to be the main causes for the giant dielectric permittivity in ANTOx ceramics.  相似文献   
2.
3.
《Ceramics International》2022,48(11):15207-15217
SCAPS solar cell simulation program was applied to model an inverted structure of perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport layer. The Cu-doped Ni1-xO film were made by co-sputtering deposition under different deposition conditions. By increasing the amount of the Cu-dopant, the film crystallinity enhanced whereas the bandgap energy decreased. The transmittance of the thin films decreased significantly by increasing the sputtering power of copper. High quality, uniform, compact, and pin-hole free films with low surface roughness were achieved. The structural, chemical, surface morphology, optical, electrical, and electronic properties of the Cu doped Ni1-xO films were used as input parameters in the simulation of Pb-based (MAPbI3-xClx) and Pb-free (MAGeI3) perovskite solar cells. Simulation results showed that the performance of both Pb-based and Pb-free perovskite solar cell devices significantly enhanced with Cu-doped Ni1-xO film. The highest power conversion efficiency (PCE) for the Pb-free perovskite solar cell is 8.9% which is lower than the highest PCE of 17.5% for the Pb-based perovskite solar cell.  相似文献   
4.
《Ceramics International》2022,48(15):21773-21780
In this work, Ni/TiC composites were synthesized by the laser cladding technique (LCT). A scanning electron microscope (SEM), X-ray diffractometer (XRD), microhardness meter, electrochemical workstation, and friction and wear tester examined the microstructure, surface morphology, phase structure, microhardness, wear, and corrosion resistances of the Ni/TiC composites. These results indicated the Ni/40TiC composite contained finer equiaxed crystals than the Ni and Ni/20TiC composites. In addition, numerous TiC particles in the Ni/40TiC composite impeded growth of the nickel crystals, which resulted in the fine microstructure of the Ni/40TiC composite. The Ni, Ni/20TiC, and Ni/40TiC composites exhibited face-centered cubic (f c c) lattices. The average microhardness values of the Ni/20TiC and Ni/40TiC composites were approximately 748 HV and 851 HV, respectively. The Ni/40TiC composite had the lowest friction coefficient (0.43) among all three coatings, and only some shallow scratches appeared on the surface of the Ni/40TiC composite. The corrosion potential (E) of Ni/40TiC exceeded the Ni/20TiC composite, and both were larger than the Ni composite, which indicated the Ni/40TiC composite had outstanding corrosion resistance and the Ni composite had poor corrosion resistance. The corrosion current densities (i) of Ni, Ni/20TiC, and Ni/40TiC composites were 5.912, 4.405, and 3.248 μA/cm2, respectively.  相似文献   
5.
Transition metals sulfide-based nanomaterials have recently received significant attention as a promising cathode electrode for the oxygen evolution reaction (OER) due to their easily tunable electronic, chemical, and physical properties. However, the poor electrical conductivity of metal-sulfide materials impedes their practical application in energy devices. Herein, firstly nano-sized crystals of cobalt-based zeolitic-imidazolate framework (Co-ZIF) arrays were fabricated on nickel-form (NF) as the sacrificial template by a facile solution method to enhance the electrical conductivity of the electrocatalyst. Then, the Co3S4/NiS@NF heterostructured arrays were synthesized by a simple hydrothermal route. The Co-ZIFs derived Co3S4 nanosheets are grown successfully on NiS nanorods during the hydrothermal sulfurization process. The bimetallic sulfide-based Co3S4/NiS@NF-12 electrocatalyst demonstrated a very low overpotential of 119 mV at 10 mA cm?2 for OER, which is much lower than that of mono-metal sulfide NiS@NF (201 mV) and ruthenium-oxide (RuO2) on NF (440 mV) electrocatalysts. Furthermore, the Co3S4/NiS@NF-12 electrocatalyst showed high stability during cyclic voltammetry and chronoamperometry measurements. This research work offers an effective strategy for fabricating high-performance non-precious OER electrocatalysts.  相似文献   
6.
The development of efficient and stable electrocatalysts is of great significance for improving water splitting. Among them, transition metal oxyhydroxides show excellent performance in oxygen evolution reactions (OER), but there are certain difficulties in direct preparation. Recently, Metal–organic frameworks (MOFs) as precatalysts or precursors have shown promising catalytic performance in OER and can be decomposed under alkaline conditions. Therefore, using a mild and controllable way to convert MOFs into oxyhydroxides and retaining the original structural advantages is crucial for improving the catalytic activity. Herein, a rapid electrochemical strategy is used to activate well-mixed MOFs to prepare Co/Ni oxyhydroxide nanosheets for efficient OER catalysts, and the structural transformation in this process was investigated in detail by using scanning electron microscope, X-ray diffraction, Raman, X-ray photoelectron spectroscopy and electrochemical methods. It is discovered that electrochemical activation can promote ligand substitution of well-mixed MOFs to form porous oxyhydroxide nanosheets and tune the electronic structure of the metal (Co and Ni), which can lead to more active site exposure and accelerate charge transfer. In addition, the change of structure also improves hydrophilicity, as well as benefiting from the strong synergistic effect between multiple species, the optimal a-MCoNi–MOF/NF has excellent OER performance and long-term stability. More obviously, the porous CoNiOOH nanosheets are formed in situ during electrochemical activation process through structural transformation and acts as the active centers. This work provides new insights for mild synthesis of MOFs derivatives and also provides ideas for the preparation of highly efficient catalysts.  相似文献   
7.
This work investigates selective Ni locations over Ni/CeZrOx–Al2O3 catalysts at different Ni loading contents and their influences on reaction pathways in ethanol steam reforming (ESR). Depending on the Ni loading contents, the added Ni selectively interacts with CeZrOx–Al2O3, resulting in the stepwise locations of Ni over CeZrOx–Al2O3. This behavior induces a remarkable difference in hydrogen production and coke formation in ESR. The selective interaction between Ni and CeZrOx for 10-wt.% Ni generates more oxygen vacancies in the CeZrOx lattice. The Ni sites near the oxygen vacancies enhance reforming via steam activation, resulting in the highest hydrogen production rate of 1863.0 μmol/gcat·min. In contrast, for 15 and 20-wt.% Ni, excessive Ni is additionally deposited on Al2O3 after the saturation of Ni–CeZrOx interactions. These Ni sites on Al2O3 accelerate coking from the ethylene produced on the acidic sites, resulting in a high coke amount of 19.1 mgc/gcat·h (20Ni/CZ-Al).  相似文献   
8.
Hydrogen technology is widely considered a novel clean energy source, and electrolysis is an effective method for hydrogen evolution. Therefore, efficient hydrogen evolution reaction (HER) catalysts are urgently needed to replace precious metal catalysts and meet ecological and environmental protection standards. Herein, Ni–Mn–P electrocatalysts are synthesized using facile electrodeposition technology. The influence of the Mn addition on the catalytic behavior is studied by the comprehensive analysis of catalytic performance and morphology of the catalysts. Among them, the Ni–Mn–P0.01 catalyst exhibits small coral-like structures, greatly improving the adsorption and desorption of hydrogen ions and reducing the overpotential hydrogen evolution. Consequently, overpotential at 10 mA cm?2 electric current density is 113 mV, and the value of the Tafel slope achieves 74 mV/dec. Furthermore, the Ni–Mn–P catalyst shows long-time (20 h) stability at current densities of 10 and 60 mA/cm2. The results confirm that the synergistic effect of Ni, Mn, and P accelerates the electrochemical reaction. Meanwhile, the addition of manganese element can change the micromorphology of the catalyst, thereby exposing more active sites to participate in the reaction, enhancing water ionization, improving the catalytic performance. This study opens a new way toward improving the activity of the catalyst by adjusting Mn concentration during the electrodeposition process.  相似文献   
9.
Today, utility meters for water are tested for measurement behavior at stable operating conditions at specified flow rates as part of the approval process. The measurement error that occurs during start and stop or when changing between flow rates may not be taken into account. In addition, there are new technologies whose measuring behavior under real-world conditions is only known to a limited extend. To take these facts into account, a new method has been developed and tested to determine the measurement behavior of water meters under dynamic load profiles as they occur in the real application. For this purpose, a test rig for flow rate measurement was extended by a cavitation nozzle apparatus and the generation of dynamic load profiles was validated. For the cavitation nozzles used, possible factors influencing the flow rate, such as temperature and purity of the water as well as the upstream pressure were investigated. Using different types of domestic water meters, the applicability of the dynamic test procedure was demonstrated and the measurement behavior of the meters was characterised.  相似文献   
10.
《Ceramics International》2022,48(15):21483-21491
To battle the high open-circuit voltage deficit (VOC,def) in kesterite (Cu2ZnSnS4 or CZTS) solar cells, a current field of research relates to point defect engineering by cation substitution. For example, by partly replacing Cu with an element of a larger ionic radius, such as Ag, the degree of Cu/Zn disorder decreases, and likewise does the associated band tailing. In this paper, solution-processed (Ag1-xCux)2ZnSnS4 (ACZTS) samples are prepared through the aprotic molecular ink approach using DMSO as the solvent. The successful incorporation of silver into the CZTS lattice is demonstrated with relatively high silver concentrations, namely Ag/(Ag+Cu) ratios of 13% and 26%. The best device was made with 13% Ag/(Ag+Cu) and had an efficiency of 4.9%. The samples are compared to the pure CZTS sample in terms of microstructure, phase distribution, photoluminescence, and device performance. In the XRD patterns, a decrease in the lattice parameter c/a ratio is observed for ACZTS, as well as significant peak splitting with Ag addition for several of the characteristic kesterite XRD reflections. In addition to the improvement in efficiency, other advantageous effects of Ag-incorporation include enhanced grain growth and an increased band gap. A too high concentration of Ag leads to the formation of secondary phases such as SnS and Ag2S as detected by XRD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号