首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11548篇
  免费   849篇
  国内免费   557篇
电工技术   445篇
技术理论   2篇
综合类   349篇
化学工业   4738篇
金属工艺   2143篇
机械仪表   227篇
建筑科学   41篇
矿业工程   144篇
能源动力   1309篇
轻工业   63篇
水利工程   4篇
石油天然气   573篇
武器工业   58篇
无线电   505篇
一般工业技术   1507篇
冶金工业   656篇
原子能技术   98篇
自动化技术   92篇
  2024年   36篇
  2023年   357篇
  2022年   288篇
  2021年   413篇
  2020年   471篇
  2019年   420篇
  2018年   354篇
  2017年   337篇
  2016年   353篇
  2015年   347篇
  2014年   479篇
  2013年   575篇
  2012年   532篇
  2011年   653篇
  2010年   504篇
  2009年   604篇
  2008年   583篇
  2007年   630篇
  2006年   596篇
  2005年   541篇
  2004年   453篇
  2003年   465篇
  2002年   511篇
  2001年   407篇
  2000年   408篇
  1999年   331篇
  1998年   224篇
  1997年   176篇
  1996年   249篇
  1995年   117篇
  1994年   123篇
  1993年   97篇
  1992年   64篇
  1991年   74篇
  1990年   51篇
  1989年   23篇
  1988年   13篇
  1987年   9篇
  1986年   7篇
  1985年   13篇
  1984年   24篇
  1983年   16篇
  1982年   17篇
  1981年   1篇
  1980年   2篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(11):15207-15217
SCAPS solar cell simulation program was applied to model an inverted structure of perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport layer. The Cu-doped Ni1-xO film were made by co-sputtering deposition under different deposition conditions. By increasing the amount of the Cu-dopant, the film crystallinity enhanced whereas the bandgap energy decreased. The transmittance of the thin films decreased significantly by increasing the sputtering power of copper. High quality, uniform, compact, and pin-hole free films with low surface roughness were achieved. The structural, chemical, surface morphology, optical, electrical, and electronic properties of the Cu doped Ni1-xO films were used as input parameters in the simulation of Pb-based (MAPbI3-xClx) and Pb-free (MAGeI3) perovskite solar cells. Simulation results showed that the performance of both Pb-based and Pb-free perovskite solar cell devices significantly enhanced with Cu-doped Ni1-xO film. The highest power conversion efficiency (PCE) for the Pb-free perovskite solar cell is 8.9% which is lower than the highest PCE of 17.5% for the Pb-based perovskite solar cell.  相似文献   
2.
《Ceramics International》2022,48(15):21773-21780
In this work, Ni/TiC composites were synthesized by the laser cladding technique (LCT). A scanning electron microscope (SEM), X-ray diffractometer (XRD), microhardness meter, electrochemical workstation, and friction and wear tester examined the microstructure, surface morphology, phase structure, microhardness, wear, and corrosion resistances of the Ni/TiC composites. These results indicated the Ni/40TiC composite contained finer equiaxed crystals than the Ni and Ni/20TiC composites. In addition, numerous TiC particles in the Ni/40TiC composite impeded growth of the nickel crystals, which resulted in the fine microstructure of the Ni/40TiC composite. The Ni, Ni/20TiC, and Ni/40TiC composites exhibited face-centered cubic (f c c) lattices. The average microhardness values of the Ni/20TiC and Ni/40TiC composites were approximately 748 HV and 851 HV, respectively. The Ni/40TiC composite had the lowest friction coefficient (0.43) among all three coatings, and only some shallow scratches appeared on the surface of the Ni/40TiC composite. The corrosion potential (E) of Ni/40TiC exceeded the Ni/20TiC composite, and both were larger than the Ni composite, which indicated the Ni/40TiC composite had outstanding corrosion resistance and the Ni composite had poor corrosion resistance. The corrosion current densities (i) of Ni, Ni/20TiC, and Ni/40TiC composites were 5.912, 4.405, and 3.248 μA/cm2, respectively.  相似文献   
3.
This work investigates selective Ni locations over Ni/CeZrOx–Al2O3 catalysts at different Ni loading contents and their influences on reaction pathways in ethanol steam reforming (ESR). Depending on the Ni loading contents, the added Ni selectively interacts with CeZrOx–Al2O3, resulting in the stepwise locations of Ni over CeZrOx–Al2O3. This behavior induces a remarkable difference in hydrogen production and coke formation in ESR. The selective interaction between Ni and CeZrOx for 10-wt.% Ni generates more oxygen vacancies in the CeZrOx lattice. The Ni sites near the oxygen vacancies enhance reforming via steam activation, resulting in the highest hydrogen production rate of 1863.0 μmol/gcat·min. In contrast, for 15 and 20-wt.% Ni, excessive Ni is additionally deposited on Al2O3 after the saturation of Ni–CeZrOx interactions. These Ni sites on Al2O3 accelerate coking from the ethylene produced on the acidic sites, resulting in a high coke amount of 19.1 mgc/gcat·h (20Ni/CZ-Al).  相似文献   
4.
Hydrogen technology is widely considered a novel clean energy source, and electrolysis is an effective method for hydrogen evolution. Therefore, efficient hydrogen evolution reaction (HER) catalysts are urgently needed to replace precious metal catalysts and meet ecological and environmental protection standards. Herein, Ni–Mn–P electrocatalysts are synthesized using facile electrodeposition technology. The influence of the Mn addition on the catalytic behavior is studied by the comprehensive analysis of catalytic performance and morphology of the catalysts. Among them, the Ni–Mn–P0.01 catalyst exhibits small coral-like structures, greatly improving the adsorption and desorption of hydrogen ions and reducing the overpotential hydrogen evolution. Consequently, overpotential at 10 mA cm?2 electric current density is 113 mV, and the value of the Tafel slope achieves 74 mV/dec. Furthermore, the Ni–Mn–P catalyst shows long-time (20 h) stability at current densities of 10 and 60 mA/cm2. The results confirm that the synergistic effect of Ni, Mn, and P accelerates the electrochemical reaction. Meanwhile, the addition of manganese element can change the micromorphology of the catalyst, thereby exposing more active sites to participate in the reaction, enhancing water ionization, improving the catalytic performance. This study opens a new way toward improving the activity of the catalyst by adjusting Mn concentration during the electrodeposition process.  相似文献   
5.
Given the continuing issues of environment and energy, methane dry reforming for syngas production have sparked interest among researchers, but struggled with the process immaturity owing to catalyst deactivation. This review summarizes the recent advances in the development of efficient and stable catalysts with strong resistance to coking and metal sintering, including the application of novel materials, the assessment of advanced characterizations and the compatibility to improved reaction system. One feasible option is the crystalline oxide catalysts (perovskite, pyrochlore, spinel and LDHs), which feature a fine metal dispersion and surface confinement effect via a metal exsolution strategy and exhibit superior reactivity and stability. Some new materials (h-BN, clays and MOFs) also extend the option because of their unique morphology and microstructure. It also is elaborated that progresses were achieved in advanced characterizations application, leading to success in the establishment of reaction mechanisms and attributions to the formed robust catalysts. In addition, the perspective described the upgrade of reaction system to a higher reaction efficiency and milder reaction conditions. The combination of efficient reaction systems and robust catalysts paves a way for a scaling-up application of the process.  相似文献   
6.
A promising electrocatalyst containing variable percentage of V2O5–TiO2 mixed oxide in graphene oxide support was prepared by embedding the catalyst on Cu substrate through facile electroless Ni–Co–P plating for hydrogen evolution reaction. The solvothermal decomposition method was opted for tuning the crystalline characteristics of prepared material. The optimized mixed oxide was well characterized, active sites centres were identified and explained by X-ray diffraction, high resolution tunnelling electron microscopy, scanning electron microscopy coupled with energy dispersive X-ray and X-ray photon spectroscopy analysis. The structural and electronic characteristics of material was done by fourier transform infrared spectroscopy and the electrochemical behaviour of the prepared material was evaluated by using Tafel plot, electrochemical impedance analysis, linear sweep voltammetry, open circuit analysis and chronoamperometry measurements. The results show the enhanced catalytic activity of Ni–Co–P than pure Ni–P plate, due to synergic effect. Moreover, the prepared mixed oxide incorporated Ni–Co–P plate has a high activity towards HER with low over potential of 101 mV, low Tafel slope of 36 mVdec?1, high exchange current density of 9.90 × 10?2 Acm?2.  相似文献   
7.
In the presence of modified methylaluminoxane as cocatalyst, the behavior of a binary catalytic system based on pyridine-imine nickel ( N ) and iron ( F ) catalysts was evaluated in order to reach a proper mixture of polyethylene (PE). A computational study along with kinetic profile suggested that the catalyst F with higher electron affinity (A) and electrophilicity (ω) in the methyl cationic active center and stronger interaction with the monomer led to high integrated monomer consumption and higher activity. In addition, the samples produced by the mixture of catalysts showed a higher value of [19.4 × 104 g (PE) mol (Fe+Ni)−1 h−1)], melting point (127.8 °C), and crystallinity extent (41.29%) than the samples produced by the single catalysts. The addition of multiwalled carbon nanotubes (MWCNT) into the polymerization media reduced the activity of catalysts [from 7.50 × 104 to 0.66 × 104 g (PE) mol (Fe+Ni)−1 h−1] and the thermal properties of the low-density polyethylene nanocomposite samples. However, the sample containing 2.33% MWCNT20-30 improved the total thermal stability of the neat polyethylene blend up to 400 °C. Scanning electron microscope images of the samples demonstrated irregular to virtually uniform morphologies were obtained through the in situ and solution-mixing techniques. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47376.  相似文献   
8.
The exploitation of recycled carbonaceous catalysts from renewable biomass resources such as chitin is a crucial issue for the development of the sustainable society. In this article, the chitin-based N and O doped carbon microspheres (ChC) were fabricated by a simple dissolution, sol–gel transformation, and the carbonization methods. Subsequently, the novel magnetic Ag-Fe3O4@chitin-based carbon microspheres catalyst (MChC) was successfully constructed through the in situ redox reaction. The as-prepared MChC possessed rich micropores with high-surface area, and a narrow size distribution (50–120 μm). The Ag-Fe3O4 nanoparticles were immobilized through the interaction with C, N, and O atoms in the pores of MChC. The reduction of 4-nitrophenol was applied to evaluate the catalytic activity of MChC. 4-Nitrophenol (4-NP) could be fully reduced to 4-aminophenol (4-AP) in 5 min with the catalyst MChC-45. Moreover, MChC could be collected in solution with an external magnet in 8 s and remained relatively high-catalytic activity after 10 cycle times. This work provided novel ideas for the fabrication of doped carbon material from biomass and promoted its utilization in nanocatalytic applications.  相似文献   
9.
A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded.  相似文献   
10.
This study demonstrates the significant improvement in NH3 decomposition using Ni-decorated M–Mo–N-based catalysts (M = Co and Ni) compared with conventional catalysts. Catalysts are prepared using a mixture of the corresponding metal salts and hexamethylenetetramine, and the impregnation method is used to decorate the Ni-particles on the catalysts. Among all the samples, 10 wt% Ni-decorated Co3Mo3N exhibits the highest NH3 conversion rate (71%) at 500 °C, and the performance remains stable for 30 h of long-term testing. According to the gas chromatography measurements, the H2/N2 ratio is approximately 3 in all cases, which is consistent with the theoretical value. X-ray photoelectron spectroscopy results show that Co3Mo3N possesses the highest NH3 conversion efficiency because of the weaker binding energy of Mo–N. Furthermore, Co3Mo3N exhibits a stronger Lewis acidity and higher NH3 decomposition, which is attributed to the easy breaking of the N–H bond on the Co3Mo3N surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号