首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学工业   1篇
能源动力   5篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
《分离科学与技术》2012,47(9-10):2840-2858
Abstract

In previous studies, we have examined using sodium permanganate for selectively oxidizing and removing chromium from washed Hanford tank sludges. The conclusion from the previous work was that contact with sodium permanganate in a minimally caustic solution, i.e., 0.1 to 0.25 M [OH] initially, provided maximum Cr dissolution while minimizing concomitant Pu dissolution. This report describes work focused on developing simulants to be used in pilot scale oxidative leaching tests; developing methods for monitoring chromium oxidation by permanganate; and identifying the Cr and Mn materials formed during the oxidative leaching process. The impact of such variables as the Cr compound used, agitation rate, temperature, hydroxide concentration, and initial MnO4 ?:Cr ratio on the rate and extent of chromate formation were examined.  相似文献   
2.
The development of efficient and stable electrocatalysts is of great significance for improving water splitting. Among them, transition metal oxyhydroxides show excellent performance in oxygen evolution reactions (OER), but there are certain difficulties in direct preparation. Recently, Metal–organic frameworks (MOFs) as precatalysts or precursors have shown promising catalytic performance in OER and can be decomposed under alkaline conditions. Therefore, using a mild and controllable way to convert MOFs into oxyhydroxides and retaining the original structural advantages is crucial for improving the catalytic activity. Herein, a rapid electrochemical strategy is used to activate well-mixed MOFs to prepare Co/Ni oxyhydroxide nanosheets for efficient OER catalysts, and the structural transformation in this process was investigated in detail by using scanning electron microscope, X-ray diffraction, Raman, X-ray photoelectron spectroscopy and electrochemical methods. It is discovered that electrochemical activation can promote ligand substitution of well-mixed MOFs to form porous oxyhydroxide nanosheets and tune the electronic structure of the metal (Co and Ni), which can lead to more active site exposure and accelerate charge transfer. In addition, the change of structure also improves hydrophilicity, as well as benefiting from the strong synergistic effect between multiple species, the optimal a-MCoNi–MOF/NF has excellent OER performance and long-term stability. More obviously, the porous CoNiOOH nanosheets are formed in situ during electrochemical activation process through structural transformation and acts as the active centers. This work provides new insights for mild synthesis of MOFs derivatives and also provides ideas for the preparation of highly efficient catalysts.  相似文献   
3.
We report an in-situ construction method for the NiFe-based oxyhydroxide OER electrocatalyst supported on the nickel foam (NF) substrate with the polyaniline (PANI) interlayer by sequential electrochemical deposition steps (NF/PANI/NiFe–OH). The ultra-thin nanosheet for the nickel-iron (oxy)hydroxides tightly grown on the porous PANI exhibits the enhanced electrochemical characteristics associated with the promotion roles of the PANI layer, which increases the number of active sites, facilitates the charge transfer, and accelerates water transport across the interfaces of the electrode. The as-prepared NF/PANI/NiFe–OH has reliable lower overpotentials of 260, 340, and 490 mV without iR-correction at 50, 100, and 200 mA cm?2 of high current densities, respectively. The smaller Tafel slope, larger ECSA, and TOF values of the electrode reveal its high intrinsic activity. Moreover, the electrode shows good stability and durability without the damage of morphology, change of surface chemical state, and substantial loss of active components at high current density.  相似文献   
4.
Carbon-supported Co(OH)2 and Ni(OH)2 catalysts are prepared to examine the mechanism of oxygen reduction reaction (ORR) on hydroxide catalysts. ORR via the 4-electron transfer pathway on a hydroxide undergoes oxidation of hydroxide by O2 to form oxyhydroxide, followed by electrochemical reaction of oxyhydroxide to regain hydroxide. β-Ni(OH)2 has the same crystal structure and lattice parameters as β-Co(OH)2, but it exhibits a poorer catalytic activity toward ORR than β-Co(OH)2 at a low temperature. The poor catalytic activity of Ni(OH)2/C can be attributed to the difficulty in Ni(OH)2 oxidation and the slow kinetics of NiOOH electroreduction to Ni(OH)2. The catalytic activity of the Ni(OH)2/C catalyst is significantly improved through elevating the operation temperature because Ni(OH)2 oxidation to NiOOH and NiOOH electroreduction are improved at a high temperature. A model of ORR via the 4-electron transfer pathway on transition metal hydroxides is suggested and discussed.  相似文献   
5.
The oxygen evolution reaction (OER) at anode requires high overpotential and is still challenging. The metallic core-oxyhydroxide layer structure is an efficient method to lower an overpotential. We synthesized Fe rich FeCo core-Co rich FeCo oxyhydroxide layer with a different particle size of 173 nm, 225 nm, and 387 nm (FeCo 173, 225, 387) through a difference in the reduction rate of Fe/Co precursors using facile modified polyol synthesis. To investigate the effect of conductivity, CoFe2O4 nanoparticles of 80–130 nm were synthesized. Among samples, FeCo 173 showed remarkable catalytic performance of 316 mV at a current density of 10 mA/cm2 in 0.1 M KOH compared to RuO2 (408 mV), FeCo 225 (323 mV), FeCo 387 (334 mV), CoFe2O4 (382 mV). Moreover, FeCo 173 showed good stability for 60,000 s while RuO2 showed a gradual increase in overpotential to maintain 10 mA/cm2 after 15,000 s in chronopotentiometry. The excellent performance was attributed to Fe-rich metallic core, a small amount of Fe doping into CoOOH, and the synergic effect between the active site of Co rich FeCoOOH and conductive Fe rich metallic core. Following this result, it shows that the use of such FeCo electrodes has advantages in the production of hydrogen via electrochemical water oxidation.  相似文献   
6.
Developing robust non-noble catalysts towards hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is vital for large-scale hydrogen production from electrochemical water splitting. Here, we synthesize Sn- and Fe-containing sulfides and oxyhydroxides anchored on nickel foam (SnFeSxOy/NF) using a solvothermal method, in which a heterostructure is generated between the sulfides and oxyhydroxides. The SnFeSxOy/NF exhibits low overpotentials of 85, 167, 249, and 324 mV at 10, 100, 500 and 1000 mA cm?2 for the HER, respectively, and a low overpotential of only 281 mV at 100 mA cm?2 for the OER. When it serves as both anode and cathode to assemble an electrolyzer, the cell voltage is only 1.69 V at 50 mA cm?2. The sulfides should be the efficient active species for the HER, while the oxyhydroxides are highly active for the OER. The unique sulfide/oxyhydroxide heterostructure facilitates charge transfer and lowers reaction barrier, thus promoting electrocatalytic processes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号