首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   1篇
电工技术   4篇
化学工业   70篇
金属工艺   2篇
能源动力   83篇
一般工业技术   6篇
原子能技术   1篇
  2022年   2篇
  2021年   1篇
  2020年   7篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   6篇
  2011年   24篇
  2010年   23篇
  2009年   20篇
  2008年   17篇
  2007年   14篇
  2006年   6篇
  2005年   2篇
  2004年   9篇
  2003年   6篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
1.
Bipolar plate represents a key component of Proton Exchange Membrane Fuel Cell (PEFC) with several essential functions, among them the electric connection of elementary cells. Usually made of graphite, this component is studied worldwide in order to develop a commercially viable alternative: different ways have been being investigated, and to date, despite corrosion issues, stainless steel (SS) appears as a good candidate material, but its Electrical Contact Resistance (ECR) can reach unacceptable values when exposed to PEFC environment. This paper offers a comprehensive study of the parameters acting on ECR when using uncoated SS in PEFC: roughness, which influences the surface contact area with carbon baking, bulk composition of the alloy, which influences only partly the nature of passive films, and the composition and structure of passive films, strongly modified by surface treatments and ageing conditions.  相似文献   
2.
Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article presents an overview on Nafion membranes highlighting their merits and demerits with efforts on modified-Nafion membranes. Energy security refers to various security measures that a given nation, or the global community as a whole, must carryout to maintain an adequate energy supply  相似文献   
3.
Nafion® ionomer content of the cathode catalyst-layer of a polymer electrolyte fuel cell (PEFC), made by the “decal” hot pressing method, has been investigated for its effect on performance and structure of the membrane electrode assembly (MEA). Varying Nafion® content was shown to have an effect on performance within the entire range of polarization curves (i.e. kinetic, ohmic, and mass-transport regions) as well as on the structure. AFM analysis shows the effect of Nafion on the dispersion of carbon aggregates. Further analysis using TEM demonstrates the effect of Nafion on both the dispersion of carbon aggregates and the distribution and thickness of the Nafion ionomer films surrounding the catalyst/carbon aggregates. The MEA structure change correlates well with the MEA performance on both kinetics and mass-transport region. The determining factors on the performance of MEA are the interfacial zone (between the ionomer and catalyst particle), the dispersion of catalyst/carbon aggregates and the distribution/thickness of Nafion films. An optimized Nafion® content in the range of 27 ± 6 wt.% for the cathode was determined for an E-TEK 20% Pt3Cr/C catalyst at a loading of 0.20 mg Pt/cm2.  相似文献   
4.
In this work, the performance of a High Temperature (HT) Polymer Electrolyte Fuel Cell (PEFC) stack for co-generation application was investigated. A 3 kW power unit composed of two 1.5 kW modules was designed, manufactured and tested. The module was composed of 40 composite graphite cell with an active area of 150 cm2. Composite Membrane Electrode Assemblies (MEAs) based on Nafion/Zirconia membranes were used to explore the behavior of the stack at high temperature (120 °C). Tests were performed in both pure Hydrogen and H2/CO2/CO mixture at different humidification grade, simulating the exit gas from a methane fuel processor. The fuel cells stack has generated a maximum power of 2400 W at 105 A with pure hydrogen and fully hydrated gases and 1700 W at 90 A by operating at low humidity grade (95/49 RH% for H2/Air). In case the stack was fed with reformate simulated stream fully saturated, a maximum power of 2290 W at 105 A was reached: only a power loss of 5% was recorded by using reformate stream instead of pure hydrogen. The humidification grade of Nafion membrane was indicated as the main factor affecting the proton conductivity of Nafion while the addition of the inert compound like YSZ, did not affectthe electrochemical properties of the membrane but, rather has enhanced mechanical resistance at high temperature.  相似文献   
5.
In this research, the development of a bioethanol reforming system for fuel cells (FBSR: fuel cell with bioethanol steam reforming) using sunlight as a heat source was investigated. The system was investigated using the experimental result of catalyst performance, and numerical analysis. If ethanol purity is high, the production method of the bioethanol used for the proposal system will not be limited. The overall efficiency of the production of electricity and heat power of this system was determined by examining its thermal output characteristic. The FBSR was introduced into standard individual houses in Sapporo, Japan, for analysis. The amount of hydrogen production, the production‐of‐electricity characteristic, and the thermal output characteristic were examined using meteorological data on representative days in March and August. Compared with the representative day in March (28.0 MJ day−1), the solar radiation of the representative day in August (37.0 MJ day−1) is large. However, the amount of solar radiation fluctuation of the representative day in August in this analysis is large compared with the representative day in March. It depends for the overall efficiency of the system on the amount of solar radiation fluctuation rather than the amount of solar radiation. As a result, the overall efficiency of the system, defined as the rate of power and heat output compared with the amount of solar heat collected, was calculated to be 47.4 and 41.9% on the representative days in March and August, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
6.
CNR–ITAE is developing several hydrogen and fuel cell demonstration and research projects, each intended to be part of a larger strategy for hydrogen communities settling in small Sicilian islands. These projects involve vehicle design, hydrogen production from renewable energy sources and methane, as well as implementation strategies to develop a hydrogen and renewable energy economy. These zero emission lightweight vehicles feature regenerative braking and advanced power electronics to increase efficiency. Moreover, to achieve a very easy-to-use technology, a very simple interface between driver and the system is under development, including fault-recovery strategies and GPS positioning for car-rental fleets. Also marine applications have been included, with tests on PEFC applied on passenger ships and luxury yacht as power system for on-board loads. In marine application, it is under study also an electrolysis hydrogen generator system using seawater as hydrogen carrier. For stationary and automotive applications, the project includes a hydrogen refuelling station powered by renewable energy (wind or/and solar) and test on fuel processors fed with methane, in order to make the power generation self-sufficient, as well as to test the technology and increase public awareness toward clean energy sources.  相似文献   
7.
Water management is widely investigated because it affects both the performance and the lifetime of polymer electrolyte fuel cells. Membrane hydration is necessary to ensure the high proton conductivity, but too much water can cause flooding and pore obstruction within the cathode gas diffusion layer and the electrode. Experimental studies prove that the characteristics of the diffusion layer have great influence on water transport; the introduction of a micro-porous layer between the gas diffusion layer and the electrode reduces flooding and stabilizes the performance of the fuel cell, although the reason is not fully explained. A quantitative method to characterize water transport through the diffusion layers was proposed in our previous work, and the present work aims to further understand the flooding phenomenon and the role of the micro-porous layer. The improved experimental setup and methodology allow an accurate and reliable evaluation of water transport through the diffusion layer in a wide range of operating conditions. The proposed 1D + 1D model faithfully reproduces the experimental data adopting effective diffusivity values in agreement with literature. The presented experimental and modelling analysis allows us to evaluate the influence of pore obstruction on the effective diffusivity, the overall transport coefficient and water flow through the diffusion layer, elucidating the effect of the micro-porous layer on fuel cell performance and operation stability.  相似文献   
8.
The cathode catalysts for polymer electrolyte fuel cells should have high stability as well as excellent catalytic activity for oxygen reduction reaction (ORR). Group 4 and 5 metal oxide-based compounds have been evaluated as a cathode from the viewpoint of their high catalytic activity and high stability. Although group 4 and 5 metal oxides have high stability even in acidic and oxidative atmosphere, they are almost insulator and have poor ORR activity because they have a large band-gap. It is necessary to modify the surface of the oxides to improve the ORR activity. We have tried the surface modification methods of oxides into four methods: (1) formation of complex oxide layer containing active sites, (2) substitutional doping of nitrogen, (3) introduction of surface oxygen defect and (4) partial oxidation of carbonitrides. These modifications were effective to improve the ORR activity of the oxides. The solubility of the oxide-based catalysts in 0.1 mol dm−3 at 30 °C under atmospheric condition was mostly smaller than that of platinum black, indicating that the oxide-based catalysts had sufficient stability compare to the platinum. The onset potential of various oxide-based cathodes for the ORR in 0.1 mol dm−3 at 30 °C achieved over 0.9 V vs. a reversible hydrogen electrode.  相似文献   
9.
A topologically equivalent pore network (TEPN) model is developed for the first time to extract pore networks directly from gas diffusion layer (GDL) microstructures and thus account for all structural features of a GDL material. A generic framework of TEPN modeling is presented to design GDL structures that enable improved water management. With TEPNs used as input to a two-phase flow simulator, constitutive relations and steady-state liquid saturation profiles for carbon paper and carbon cloth are obtained and reported in this work. The results indicate a strong influence of the GDL morphology on water transport characteristics, which helps unravel the structure-performance relationship for GDLs.  相似文献   
10.
Fuel gas (hydrogen gas) and oxidant gas (air) are supplied to a polymer electrolyte fuel cell (PEFC). Protons pass through the electrolyte membrane, and combine with oxygen to form water in the cathode reaction site. The generated water must be supplied appropriately to the membrane for proton conduction. On the other hand, the generated water may affect the fuel cell performances because of the blocking of oxygen from reaching the cathode reaction site. Therefore, water management in the PEFC is important, and water distribution during the operation in the through-plane direction has been of wide concern. In order to obtain the water distributions in a membrane electrode assembly (MEA) and a gas diffusion layer (GDL), a borescope system was newly employed using neutron radiography. The system could obtain the water distribution in the MEA and the GDL, and pixel size of 6.5 μm was achieved. Furthermore, the system was applied for a tilted converter system. The pixel of 1.0 μm at an angle of 81° was achieved, and improvement of the spatial resolution was confirmed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号