首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
  国内免费   1篇
化学工业   8篇
金属工艺   1篇
能源动力   43篇
无线电   4篇
一般工业技术   5篇
  2023年   3篇
  2022年   2篇
  2021年   7篇
  2020年   8篇
  2019年   7篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  1997年   1篇
排序方式: 共有61条查询结果,搜索用时 31 毫秒
1.
This work aims at developing a new composite material based on nanosized semiconducting CuInS2 (CIS) particles combined with silicon nanowires grown on a silicon substrate (SiNWs/Si) for photoelectrochemical (PEC)-splitting of water. The CIS particles were prepared via a colloidal method using N-methylimidazole (NMI) as the solvent and an annealing treatment. The SiNWs were obtained by chemical etching of silicon (100) substrates assisted by a metal. The CIS/SiNWs/Si composite material was obtained by deposition of an aliquot of a suspension of CIS particles onto the SiNWs/Si substrate, using spin coating followed by a drying step. The XRD pattern demonstrated that CuInS2 grows in the tetragonal/chalcopyrite phase, while SiNWs/Si presents a cubic structure. The SEM images show semi-spherical particles (~10 nm) distributed on the surface of silicon nanowires (~10 μm). The EIS measurements reveal n-type conductivity for CIS, SiNWs/Si and CIS/SiNWs/Si materials, which could favour the oxidation reaction of water molecules.  相似文献   
2.
The revolution in the arena of functional materials for the development of well advanced engineered photocatalyst can efficiently harness photon energy from a wide spectrum of electromagnetic radiation. These next-generation smart materials would be a spectacular approach in designing devices such as photovoltaic cells, photoelectrochemical cells, and photocatalytic fuel cells. Photocatalytic oxidation of water or wastewater for concurrent production of hydrogen and electric current has turned out as a principal concept for the construction of modern photocatalytic fuel cells (PFCs). Such PFCs mimics reverse photosynthesis process where electrical energy is generated from organic pollutants. In recent years many reviews on focusing the design, fabrication, and theoretical efficiency of the PFCs have been published. Hence the present review is aimed to unveil the wall-to-wall information starting from fundamentals spanning to working principles, structural configuration, electrochemical degradation of pollutants and photoelectrochemical properties, electron transport, thermodynamic behavior and columbic efficiency of studied PFCs.  相似文献   
3.
Photon management involving particularly an up-conversion process is proposed as a relatively novel strategy for improving the efficiency of hydrogen generation in photoelectrochemical cells (PEC) with wide-band gap photoanodes. Optically active photoanode has been constructed by electrodeposition of titanium dioxide nanopowders containing Nd3+ ions, synthesized via a sol-gel method, onto ITO/TiO2(thin film) substrates. Thin films of TiO2 have been deposited by means of RF magnetron sputtering in an ultra-high-vacuum system. X-ray diffraction, scanning electron microscopy, UV-VIS-NIR spectrophotometry, and photoluminescence have been applied to assess the properties of photoanodes. In experiments involving photon-assisted water splitting, an external up-converter containing Yb3+/Er3+ rare-earth ions has been used. Photocurrent as a function of voltage (VB) under illumination with white light is relatively high (280 μA at VB = 0 V) for pure TiO2 thin films and it is not affected by the electrodeposition of TiO2:Nd3+ powders. NIR-driven up-conversion with laser excitation at λ = 980 nm has been found responsible for a 13-fold increase in photocurrent at VB = 0 V in the modified PEC configuration.  相似文献   
4.
The paper presents the properties of WO3 films considering the possibility to build a photoelectrochemical cell (PECC) for hydrogen production. The photocurrent response of the PECC containing WO3/TCO as photoanode and Pt as cathode was analysed. The morphology, crystalline structure and electrical aspects were investigated. Tungsten trioxide (WO3) thin film with porous morphology and high crystallinity was obtained using the spray pyrolysis deposition technique.  相似文献   
5.
Rose bengal-deposited TiO2 film electrodes bearing dispersed Ag or Au nanoparticles were prepared by the sol-gel method. The dye-induced visible region photoresponse of the electrodes decreased with increasing Ag content up to a mole ratio of Ag/TiO2 = 0.0207, while the UV photoresponse increased. On the other hand, the dye-induced visible region photoresponse decreased to a less extent by incorporation of a larger amount of Au particles of Au/TiO2 = 0.06, along with decreased UV photoresponse. The effects of the metal particles on the dye sensitization of the electrodes were discussed in terms of band edge fluctuation induced by the surface metal particles, Schottky barriers at TiO2/metal interfaces, and surface plasma resonance.  相似文献   
6.
In this paper we explore the feasibility of using electrodeposition as a low-cost, versatile and easily upscalable technique for preparing α-Fe2O3 (hematite) photoanodes for water splitting applications. The photoelectrodes are prepared on transparent conducting glass substrates by electrodeposition of Fe, using a non-aqueous precursor solution at room temperature, followed by thermal oxidation in air. Variations in deposition parameters yield films with diverse morphologies. The effects of the different morphologies on the structural, optical, and photoelectrochemical properties are investigated by photocurrent measurements under AM1.5 illumination. The photocurrent could be improved by growing the first part of the Fe film at low current densities, yielding a dense underlayer, followed by the deposition of a more structured, porous film at high current densities. X-ray diffraction reveals that high deposition currents result in smaller crystallites and a (110) preferred orientation. This orientation is favorable when using hematite as a photoanode, since the conductivity in the [110] direction is known to be up to four orders of magnitude higher than in directions perpendicular to this.  相似文献   
7.
Photoelectrochemical water splitting using solar energy is a highly promising technology to produce hydrogen as an environmentally friendly and renewable fuel with high-energy density. This approach requires the development of appropriate photoelectrode materials and substrates, which are low-cost and applicable for the fabrication of large area electrodes. In this work, hematite photoelectrodes are grown by aerosol assisted chemical vapour deposition (AA-CVD) onto highly-conductive and bulk porous SnO2 (Sb-doped) ceramic substrates. For such photoelectrodes, the photocurrent density of 2.8 mA cm-2 is achieved in aqueous 0.1 M NaOH under blue LED illumination (λ = 455 nm; 198 mW cm-2) at 1.23 V vs. RHE (reversible hydrogen electrode). This relatively good photoelectrochemical performance of the photoelectrode is achieved despite the simple fabrication process. Good performance is suggested to be related to the three-dimensional morphology of the porous ceramic substrate resulting in excellent light-driven charge carrier harvesting. The porosity of the ceramic substrate allows growth of the photoactive layer (SnO2-grains covered by hematite) to a depth of some micrometers, whereas the thickness of Fe2O3-coating on individual grains is only about 100–150 nm. This architecture of the photoactive layer assures a good light absorption and it creates favourable conditions for charge separation and transport.  相似文献   
8.
Dye-sensitized solar cells have been fabricated by employing graphene/TiO2 nanocomposites as photoanodes and graphene as a counter electrode. The mixing technique is used to prepare graphene/TiO2 nanocomposites. The dispersion of graphene in TiO2 is affirmed by transmission electron microscopy analysis. X-ray photoelectron spectroscopy is carried out to confirm the interstitial incorporation of carbon atoms in the TiO2 matrix through O TiC and TiOC surface states. The electrochemical activity and stability of graphene as a catalyst for counter electrode are investigated by cyclic voltammetry and chronoamperometry measurements. Solar cells fabricated are characterized by photocurrent–voltage characteristic, Incident photon-to-current efficiency, and electrochemical impedance spectroscopy analyses. The solar cell assembled with 0.08%GR-TiO2/N3/GR shows power conversion efficiency of 7.70%. This efficiency is superior to that of TiO2/N3/Pt based solar cell (7.28%). The improvement in efficiency can be attributed to a fast electron transport, improved light harvesting efficiency, and enhanced electron collection at photoanodes.  相似文献   
9.
The physical properties and photoelectrochemical characterization of α-Fe2O3, synthesized by co-precipitation, have been investigated in regard to solar energy conversion. The optical gap is found to be 1.94 eV and the transition is indirectly allowed. The chemical analysis reveals an oxygen deficiency and the oxide exhibits n-type conductivity, confirmed by a negative thermopower. The plot log σ vs 1/T shows linearity in the range (400-670 K) with the donor levels at 0.14 eV below the conduction band and a break at ∼590 K, attributed to the ionization of the donors. The conduction occurs by small polaron hopping through mixed valences Fe2+/3+ with an electron mobility μ400 K of 10−3 V cm2 s−1. α-Fe2O3 exhibits long term chemical stability in neutral solution and has been characterized photoelectrochemically to assess its activity as bias-free O2-photoanode. The flat band potential Vfb (−0.45VSCE) and the electron density ND (1.63 × 1018 cm−3) were determined, respectively, by extrapolating the linear part to C−2 = 0 and the slope of the Mott Schottky plot. At pH 6.5, the valence band (+1.35VSCE) is suitably positioned with respect to the O2/H2O level (+0.62 V) and α-Fe2O3 has been evaluated for the chemical energy storage through the photocatalytic reaction: (, ΔG = 213.36 kJ mol−1). The best photoactivity occurs in solution (0.025 M, pH 8) with an oxygen rate evolution of 7.8 cm3 (g catalyst)−1 h−1.  相似文献   
10.
Broadening the light absorption and accelerating the separation of photogenerated electron-hole pairs is of crucial importance for strongly enhancing the photoelectrochemical (PEC) water splitting performances of photoelectrode. In this paper, a novel CaBi6O10/Cu2O/NiOOH photoanode for photoelectrochemical water splitting is prepared, where, the NiOOH acts as water oxidation catalyst to accelerate water oxidation taking place in the interfaces between electrode and electrolyte, Cu2O is chosen to extend the absorption range of the light absorber, enhancing an efficient separation and transfer of the electron-hole pairs. This triple CaBi6O10/Cu2O/NiOOH photoanode negatively shifts the onset potential and exhibits an improved photocurrent density 1.89 mA·cm?2 at 1.23 V vs RHE, which is 1.4 and 4.8 times higher compared to CaBi6O10/Cu2O and CaBi6O10, respectively. More importantly, the CaBi6O10/Cu2O/NiOOH electrode shows excellent photoelectrochemical stability in comparison with CaBi6O10/Cu2O after 2 h irradiation. The amazing photoelectrochemical performance is due to the broader light absorption spectrum, the improved photogenerated carriers separation, transfer and consumption. The research results demonstrate a promising ternary semiconductor structure, which can improve photoelectrochemical performance effectively. Moreover, these results also imply that the CaBi6O10/Cu2O/NiOOH heterojunction structure has a great potential application for photoelectrochemical water splitting systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号