首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   781篇
  免费   6篇
  国内免费   1篇
电工技术   2篇
综合类   8篇
化学工业   286篇
金属工艺   6篇
机械仪表   8篇
建筑科学   17篇
矿业工程   1篇
能源动力   373篇
轻工业   1篇
石油天然气   16篇
无线电   4篇
一般工业技术   56篇
冶金工业   4篇
自动化技术   6篇
  2023年   8篇
  2022年   14篇
  2021年   18篇
  2020年   21篇
  2019年   13篇
  2018年   7篇
  2017年   6篇
  2016年   4篇
  2015年   11篇
  2014年   38篇
  2013年   31篇
  2012年   16篇
  2011年   69篇
  2010年   47篇
  2009年   94篇
  2008年   51篇
  2007年   57篇
  2006年   46篇
  2005年   48篇
  2004年   30篇
  2003年   40篇
  2002年   17篇
  2001年   13篇
  2000年   15篇
  1999年   12篇
  1998年   10篇
  1997年   7篇
  1996年   17篇
  1995年   3篇
  1994年   7篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
  1951年   1篇
排序方式: 共有788条查询结果,搜索用时 15 毫秒
1.
In the present study, non-premixed combustion and NOx emission of H2, NH3, C3H8, and CH4 fuels have been studied in a combustion test unit under lean mixture conditions (λ = 4) at 8.6 kW thermal capacity. Furthermore, the combustion and NOx emission of the H2, C3H8, and CH4 fuels have been investigated for various NH3 enrichment ratios (5, 10, 20, and 50%) and excess air coefficients (λ = 1.1, 2, 3, and 4) at the same thermal capacity. The obtained results have been compared for each fuel. Numerical simulation results show that H2 emits intense energy through the reaction zone despite the lowest fuel consumption in mass, among others, due to its high calorific value. Therefore, it has a higher flame temperature than others. At the same time, C3H8 has the lowest flame temperature. Besides, NH3 has the shortest flame length among others, while C3H8 has the most extended flame form. The highest level of NOx is released from the NH3 flame in the combustion chamber, while the lowest NOx is released from the CH4. However, the lowest NOx emission at the combustion chamber exit is obtained in NH3 combustion, while the highest NOx emission is obtained with H2 combustion. It results from the shortest flame length of NH3, short residence time, and backward NOx reduction to N2 for NH3. As for H2, high flame temperature and relatively long flame, and high residence time of the products trigger NOx formation and keep the NOx level high. On the other hand, excess air coefficient from 1.1 to 2 increases NOx for H2, CH4, and NH3 due to their large flame diameters, unlike propane. Then, NOx emission levels decrease sharply as the excess air coefficient increases to 4 for each fuel. NH3 fuel also emits minimum NOx in other excess air coefficients at the exit, while H2 emits too much emission. With NH3 enrichment, the NOx emissions of H2, CH4, and C3H8 fuels at the combustion chamber exit decrease gradually almost every excess air coefficient apart from λ = 1.1. As a general conclusion, like renewable fuels, H2 appears to be a source of pollution in terms of NOx emissions in combustion applications. In contrast, NH3 appears to be a relatively modest fuel with a low NOx level. In addition, the high amount of NOx emission released from H2 and other fuels during the combustion can be remarkably reduced by NH3 enrichment with an excess air combustion.  相似文献   
2.
Injecting hydrogen into the natural gas network to reduce CO2 emissions in the EU residential sector is considered a critical element of the zero CO2 emissions target for 2050. Burning natural gas and hydrogen mixtures has potential risks, the main one being the flame flashback phenomenon that could occur in home appliances using premixed laminar burners. In the present study, two-dimensional transient computations of laminar CH4 + air and CH4 + H2 + air flames are performed with the open-source CFD code OpenFOAM. A finite rate chemistry based solver is used to compute reaction rates and the laminar reacting flow. Starting from a flame stabilized at the rim of a cylindrical tube burner, the inlet bulk velocity of the premixture is gradually reduced to observe flashback. The results of the present work concern the effects of wall temperature and hydrogen addition on the flashback propensity of laminar premixed methane-hydrogen-air flames. Complete sequences of flame dynamics with gradual increases of premixture velocity are investigated. At the flame flashback velocities, strong oscillations at the flame leading edge emerge, causing broken flame symmetry and finally flame flashback. The numerical results reveal that flashback tendency increase with increasing wall temperature and hydrogen addition rate.  相似文献   
3.
γ-Al2O3 supported vanadium oxides were modified by tungsten and molybdenum oxides in order to improve dispersion and selectivity towards olefins in propane oxidative dehydrogenation (ODH). Both vanadium–tungsten and vanadium–molybdenum catalysts were obtained by adsorption of mixed isopolyanions (VW5O195−, V2W4O194−, VMo5O195− and V2Mo4O194−) from aqueous solutions. The isopolyanion solutions were characterized by UV-Vis and 51V NMR spectroscopy. Vanadium, vanadium–tungsten and vanadium–molybdenum precursors and catalysts were also characterized by UV-Vis (diffuse reflectance) and solid state 51V NMR spectroscopy. An improved selectivity to propene in the presence of tungsten and molybdenum in VOx/γ-Al2O3 was observed and attributed to dilution of vanadium by tungsten or molybdenum oxides on the γ-Al2O3 surface.  相似文献   
4.
The role of Nb2O5 and γ-Al2O3 oxide supports on the ammoxidation of propane on supported mixed Sb–V oxide at different Sb+V surface coverages is studied. Sb and V oxide species on alumina and on niobia support show different structural features that reflect in different performance during the ammoxidation of propane to acrylonitrile. Niobia-supported catalysts are much more selective to acrylonitrile than alumina-supported ones. Alumina interacts weakly with the supported oxides while niobia forms new phases through solid state reactions with the supported oxides during catalytic operation that must account for its higher selectivity values towards acrylonitrile and higher specific rate of acrylonitrile formation per vanadium site.  相似文献   
5.
Indirect partial oxidation (IPOX) of propane was studied over bimetallic 0.2 wt.% Pt–15 wt.% Ni/δ-Al2O3 catalyst in the 623–743 K temperature range. The unreduced and reduced forms of the catalyst were characterized by ESEM–EDAX and X-ray diffraction (XRD). In the IPOX tests, the effects of steam to carbon ratio (S/C), carbon to oxygen ratio (C/O2) and residence time (W/F (gcat h/mol HC)) on the hydrogen production activity, selectivity and product distribution were studied in detail. The effect of temperature program applied (increasing from 623 to 743 K, ITP; decreasing from 743 to 623 K, DTP) during reaction was also tested. The results showed that the Pt–Ni bimetallic system has superior performance characteristics compared to the monometallic catalysts reported in literature. The reason is thought to be the utilization of the catalyst particles as micro heat exchangers during IPOX; the heat generated by Pt sites during exothermic total oxidation (TOX) being readily transferred through the catalyst particles acting as micro heat exchangers to the Ni sites, which promote endothermic steam reforming (SR). The optimal conditions were found as S/C = 3, C/O2 = 2.70 and W/F = 0.51 gcat h/mol HC for IPOX of propane on the basis of high hydrogen productivity and selectivity between 623 and 748 K for the experimental conditions tested. The thermo-neutral points obtained showed the sustainability of reaction in terms of energy.  相似文献   
6.
A 1% Pd catalyst (38% dispersion) was prepared by impregnating a γ-alumina with palladium acetylacetonate dissolved in acetone. The behaviour of this catalyst in oxidation and steam reforming (SR) of propane was investigated. Temperature-programmed reactions of C3H8 with O2 or with O2 + H2O were carried out with different stoichiometric ratios S(S =[O2]/5[C3H8]). The conversion profiles of C3H8 for the reaction carried out in substoichiometry of O2 (S < 1) showed two discrete domains of conversion: oxidation at temperatures below 350°C and SR at temperatures above 350°C. The presence of steam in the inlet gases is not necessary for SR to occur: there is sufficient water produced in the oxidation to form H2 and carbon oxides by this reaction. Contrary to what was observed with Pt, an apparent deactivation between 310 and 385°C could be observed with Pd in oxidation. This is due to a reduction of PdOx into Pd0, which is much less active than the oxide in propane oxidation. Steam added to the reactants inhibits oxidation while it prevents the reduction of PdOx into Pd0. Compared to Pt and to Rh, Pd has a higher thermal resistance: no deactivation occurred after treatment up to 700°C and limited deactivation after treatment up to 900°C, provided that the catalyst is maintained in an oxygen-rich atmosphere during the cooling.  相似文献   
7.
掺炼糠醛抽出油生产高质量沥青   总被引:3,自引:0,他引:3  
掺炼糠醛抽出油,改变了丙烷脱沥青装置原料性质,通过调整部分操作参数,可提高轻脱油和重脱油的收率,改善脱油沥青质量,直接生产出合格的高标号道路沥青。  相似文献   
8.
This paper discusses the feasibility of a vapor compression/absorption hybrid refrigeration cycle for energy saving and utilization of waste heat. The cycle employs propane as a natural refrigerant and a refrigeration oil as an absorbent. A prototype of the cycle is constructed, in which a compressor and an absorption unit are combined in series. The performance of the cycle is examined both theoretically and experimentally. Although the solubility of the propane with the oil is not enough as a working pair in the absorption unit, the theoretical calculation shows that the hybrid cycle has a potential to achieve a higher performance in comparison with a simple vapor compression cycle by using the waste heat. In the experiment, the prototype cycle is operated successfully and it is found that an improvement of an absorber is necessary to achieve the good performance close to the theoretical one. The application of an AHE (absorber heat exchanger) can reduce the heat input to a generator. Further examinations on some other combinations of refrigerant/refrigeration oil and additives are desirable.  相似文献   
9.
The activation of propane using zeolite H-Y and Ga3+ exchanged zeolite Y indicates that in the presence of Ga3+ the mechanism of propane activation is changed from a cracking pathway to a dehydrogenation pathway. The presence of both Ga3+ and H+ are required to achieve this effect.  相似文献   
10.
A VPO/TiO2 catalyst tested in the oxydehydrogenation reaction (ODH) of propane between 300 and 400°C shows satisfactory performances (up to 80% of propene selectivity at 2% of propane conversion at 300°C or 56% of propene selectivity at 9% of propane conversion at 400°C). Addition of water or pyridine in the feed gas tends to decrease the propane conversion and enhances the propene selectivity. It is shown that water increases the number of Brönsted surface acid sites by dissociative adsorption which, in turn, enhances propene selectivity at the expense of the COx selectivity. These results are in good agreement with spectroscopic IR observations performed under catalytic conditions showing that the Lewis acid sites are linked to COxformation, whereas it seems that Brönsted sites would rather be linked to propene formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号