首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   3篇
化学工业   1篇
能源动力   14篇
自动化技术   1篇
  2022年   5篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2017年   2篇
  2012年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
Energy demand, decreasing fossil fuel reserves, and health-related issues about pollutants have led researchers to search for renewable alternative fuels to either partially or fully replace fossil fuels. Among many alternative fuels, biodiesel became one of the most popular choices due to similar properties to that of conventional diesel. Biodiesel produces slightly lower brake thermal efficiency compared to that of conventional biodiesel, but has an advantage of reduced emissions of CO2, CO, HC, and smoke. However, biodiesel shows higher NOx emission which, when used in increased biodiesel market, may become a serious problem. Various strategies were attempted by different researcher to reduce NOx emissions. In this paper, various strategies, adapted for reducing NOx emissions of biodiesel fuel used in diesel engines for automobile applications, are reviewed and discussed. The strategies are grouped into three major groups, namely combustion treatments, exhaust after-treatments, and fuel treatments. Among various strategies discussed, fuel treatments, such as low temperature combustion, mixing fuel additives and reformulating fuel composition, reduce NOx emission without compromising other emission and performance characteristics and they seem to be promising for future biodiesel fuel.  相似文献   
2.
Biogas can be used as a less expensive continuance renewable fuel in internal combustion engines. However, variety in raw materials and process of biogas production results in different components and percentages of various elements, including methane. These differences make it difficult to control the combustion, effectively, in internal combustion engines. In this research, under cleaning and reforming process, biogas components were fixed. Then the effect of reformed biogas (R.BG) was investigated, numerically, on the combustion behavior, performance and emissions characteristics of a RCCI engine. A 3D-computational modeling has been performed to validate a single-cylinder compression ignition engine in conventional diesel and dual-fuel operations at 9 bar IMEP, 1300 rpm. Then, the combustion model of the RCCI engine was simulated by replacing diesel fuel with 20%, 40% and 60% of R.BG as a low reactivity fuel while remaining constant input total fuel energy per cycle. The results demonstrated that when the R.BG substitution ratio increases with a constant equivalence ratio of 0.43, the mean combustion temperature decreases to 1354 K, 1312 K, 1292 K which are about 3.5%, 6.6%, 7.9% lower than the conventional diesel combustion, respectively. The maximum in-cylinder pressure increases up to 22.63%. Instead, it results in 2.3%, 7.9%, and 14.5% engine power output losses, respectively. Also, the NOx emission, against CO, is decreased by 50%. Soot and UHC emissions were found to be slightly decreased while was used R.BG more than 40%.  相似文献   
3.
In this study, the effect of hydrogen addition to DME/CH4 dual-fuel RCCI (Reactivity Controlled Compression Ignition) engine is investigated using three dimensional calculations coupled with chemical kinetics. A new reduced DME (Dimethyl Ether) oxidation mechanism is proposed in this study. With the addition of H2, the ignition time is advanced and the peak cylinder pressure is increased. The addition of hydrogen has a greater effect on the beginning stage of combustion than the later stages of combustion. The CH4 emission is reduced with the addition of H2. However, as the flame does not propagate throughout the charge, the CH4 emission is still high. The CO emission is reduced and most of the remaining CO is produced by the combustion of the premixed CH4. With the addition of hydrogen, NO emission is increased. The simulation shows that the final NOx emissions are significantly determined by the injection strategy and quantity of the pilot fuel during dual fuel operation conditions.  相似文献   
4.
Diesel engine with RCCI (Reactivity Controlled Compression Ignition) finds the next generation technology in engine research for combusting slow burning fuels such as vegetable oils and arriving extremely lower levels of smoke and NO (Nitric Oxide) emissions simultaneously. An attempt was made to operate a diesel engine on RCCI mode by injecting ethanol as low reactivity fuel at the intake manifold of the engine using sunflower based Waste Cooking Oil (WCO) as high reactivity fuel under oxygen enriched intake air. The influence of the combined effect of oxygen enrichment and RCCI mode on engine's behavior was studied using WCO as the high reactivity (main) fuel. Significant improvement (upto 33.5% with RCCI mode from 29.1% with neat WCO at peak power) in BTE (brake thermal efficiency) with drastic reduction in smoke (upto 48% with RCCI at the maximum efficiency point from 69% with neat WCO at peak power) and NO were achieved with injection of ethanol under RCCI mode when using WCO as base fuel mainly at high loads (power outputs). Combining oxygen enrichment with RCCI resulted in further improvement in BTE (upto 36.2%) and reduction in smoke (upto 37% at the maximum efficiency point), HC and CO emissions at all power outputs. Peak pressure and energy release rate were found to be superior with RCCI mode with EF (electronic fuel) injection of ethanol associated with oxygen enriched combustion. It is concluded that RCCI operation with injection of ethanol combined with oxygen enrichment could be preferred for very high BTE, lowest smoke and NO emissions using WCO as base fuel. The optimal level of low reactivity fuel blending with high reactivity WCO could be at the ethanol energy share of 25% for the highest thermal efficiency at peak load. The optimal oxygen concentration of 23% by volume could be preferred for best performance of the engine fueled with WCO as main fuel.  相似文献   
5.
为优化反应活性控制压燃(reactivity controlled compression ignition,RCCI)发动机的燃烧室结构与喷油策略,基于CONVERGE数值模拟研究了挤流区高度、喉口半径与喷雾夹角对75% 负荷工况下天然气—柴油RCCI发动机着火特性、燃烧特性及排放特性的影响.结果表明:增大挤流区高度...  相似文献   
6.
A detailed investigation of employing landfill gas together with additives such as hydrogen or propane or both as a primary low reactivity fuel in a reactivity controlled compression ignition combustion of a diesel engine is conducted. A 3401E caterpillar single-cylinder diesel engine with a bathtub piston bowl profile is utilized to execute the study. The engine is operated at various intake pressures of 1.6, 1.9, and 2.2 bar, and runs at a fixed engine speed of 1300 rpm. For verification purposes, the conduct of the present engine running on pure methane as a low reactivity fuel is compared to that of the same engine available in the literature. Next, a numerical simulation is made to assess the performance of the present engine running on landfill gas plus the additives. Based on the obtained results, injecting either hydrogen or propane or a combination of both up to a total amount of 10% by volume to the premixed of landfill gas and air, and advancing diesel fuel injection timing of about 20–30 deg. crank angle, render the landfill gas utilization quite competitive with using methane alone. Applying an enriched landfill gas in a reactivity controlled compression ignition diesel engine, as a power generator, drastically reduces the greenhouse gas emission to the atmosphere. Also, the CO and UHC mole fraction in the exhaust gas can be eliminated by either advancing the start of diesel injection or using hydrogen or propane or both as additives. In addition, utilizing hydrogen or propane or a combination of both with the primary fuel improves the peak pressure to about 16% in comparison with that of landfill gas alone.  相似文献   
7.
There is a growing concern about the feasibility of a new generation of internal combustion engines in a low-temperature and efficient way that can meet the emission regulations while maintaining the desirable power performance. This requires the controllability and flexibility over the ignition and reactivity within the cylinder by handling two fuels with different chemical reaction intensity. In this research, the reactivity controlled compression ignition (RCCI) turbocharger-assisted engine is proposed that operates with diesel-hydrogen fuels. After calibration and model validation, the effect of pressure ratio of compressor in turbocharger, hydrogen energy share, diesel mass per cycle, and combustion duration on temperature rise, entropy, pressure, heat release, and engine performance is evaluated. The design variables effects on the exergy share of work, heat, exhaust loss, irreversibility, and exergetic performance coefficient (EPC) are assessed and analyzed. Increasing the compressor pressure ratio can significantly increase the engine power and reduce fuel consumption. It is proved that turbocharging can reduce the entropy generation and thereby reduce irreversibility. The lower diesel injection is favored in terms of the work exergy and the EPC.  相似文献   
8.
The catalytic reforming is an applicable method to generate hydrogen as an alliterative fuel directly that is of prime interest to replace hydrocarbon fuels. Although, the use of this type of catalyst has the potential to solve the problem of safe storage of hydrogen in ICEs, but, this method suffers from the simultaneous production of carbon monoxide with hydrogen known as syngas. Depending on the engine operating conditions, different syngas composition in terms of H2/CO volumetric ratio can be produced through the mentioned catalyst. An engine performance which uses onboard hydrogen produced is completely affected by syngas composition. Therefore, the aim of the current simulation study is to evaluate the performance of a heavy-duty diesel engine under RCCI combustion fueled with diesel fuel/natural gas blended with syngas with different compositions. For this purpose, at 9.4 bar gross IMEP, natural gas is gradually replaced by five different compositions of syngas that is H2/CO volumetric ratios of 33.33/66.67, 50/50, 66.67/33.33, 80/20, and 100/0. The simulation results show that not only the engine output power can be improved up to 27.7% by simply increasing of the CO/H2 volumetric ratio in syngas composition to 66.67/33.33, but also the GIE is reduced by less than 9%. In contrast, the risk of the diesel knock occurrence may increase only in higher CO/H2 ratios. Although, the NOx level can be achieved closer to the EURO VI level, but, same level for UHC and CO and also the level of EPA 2007 for formaldehyde are not achievable for syngas with the higher CO/H2 volumetric ratio.  相似文献   
9.
对某4缸高压共轨柴油机进气歧管进行改造,搭建了柴油/甲醇双燃料反应活性控制压燃(reactivity controlled compression ignition,RCCI)发动机专用试验台架,系统地研究了甲醇替代率对发动机经济性和污染物排放的影响规律.结果表明:最大转矩转速1600 r/min下,负荷率25%~50...  相似文献   
10.
The aim of this study is to investigate the effects of hydrogen addition on RCCI combustion of an engine running on landfill gas and diesel oil. A single cylinder heavy– duty diesel engine is set in operation at 9.4 bar IMEP. A certain amount of diesel fuel per cycle is fed into the engine and hydrogen is added to landfill gas while keeping fixed fuel energy content. The developed simulation results confirm that hydrogen addition which is the most environmental friendly fuel causes the fuel consumption per any cycle to reduce. Also, the peak pressure is increased while the engine load is reduced up to 4%. Landfill gas which is enriched with hydrogen improves the rate of methane dissociation and reduces the combustion duration at the same time the engine operation would not be exposed to diesel knock. Moreover, hydrogen addition to landfill gas would reduce engine emissions considerably.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号