首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
能源动力   4篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2014年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Strategies of H2 production and CO2 mineralization were combined through olivine [(Mg,Fe)2SiO4] serpentinization and carbonation in a CO2-rich hydrothermal system. However, natural mantle peridotites commonly contain not only olivine but also orthopyroxene and/or clinopyroxene, which have effects that are not well understood. The present study investigated the reactions in H2O-olivine/orthopyroxene-CO2 systems by performing hydrothermal experiments in 0.5 M NaHCO3 solutions at 300 °C and 10 MPa.The yields of H2 and HCOOH initially were first suppressed in the presence of orthopyroxene; however, after orthopyroxene consumption, the rate of H2 production increased significantly. H2 yield increased to 348.3 mmol/kgmineral in 120 h with the presence of 20 wt% orthopyroxene at the beginning of the reaction. The initial suppression of H2 generation was due to incorporation of more Fe(II) into serpentine [(Mg,Fe)3Si2O5(OH)4] in the high SiO2(aq) concentration system. The presence of orthopyroxene also dramatically accelerated serpentine formation. In contrast, magnesite [(Mg,Fe)CO3] formation was inhibited upon addition of orthopyroxene, which also contributed to the release of Fe(II). Therefore, peridotite containing ≤20 wt% of pyroxenes is more suitable for long-term H2 production than pure olivine. When considering the reaction output of a water-peridotite-CO2 system, controlling the percentage of pyroxenes in the starting mineral may be more important than expected.  相似文献   
2.
Artificial control of olivine alteration has potential applications for both H2 production and CO2 reduction (by mineralization and hydrogenation). To explore methods to overcome the still-constrained olivine alteration problem, olivine + spinel alteration experiments were performed with the addition of Mg–Al spinel in CO2-rich (0.5 M NaHCO3) solution under hydrothermal conditions (300 °C and 10 MPa). Mg–Al spinel enhanced olivine serpentinization significantly (more than 2 times), and generation of both H2 and CO2 hydrogenation products was accelerated (up to 3 times) with ≥10 wt% Mg–Al spinel especially at the latter stage of the 72 h reaction.Mineral measurements revealed that more Al released from Mg–Al spinel was incorporated into Al-serpentine by the replacement of Fe with higher Mg–Al spinel content. Both Al and Fe incorporated into Al-serpentine were released as the reaction proceeded. Thus, H2 production was elevated with the presence of a large amount Mg–Al spinel at the latter stage of the reaction. HCO3 played an important role in the promotion of Mg–Al spinel dissolution with the release of Al, which was stored in magnesite after being utilized. This study also suggests that the presence of Mg–Al spinel (5–20 wt%) in the starting mineral does not have significant influence on the total H2 yield from olivine alteration over the entire operation period.  相似文献   
3.
Olivine is one of the most widespread minerals of the Earth's upper mantle. It is widely accepted in the scientific community, that during olivine interaction with water large amounts of hydrogen are released. On the other hand, the idea of an accumulation of huge hydrogen amounts in the core and lower mantle of the Earth is becoming more and more popular now. In this paper, we attempt to assess the possible interaction of hydrogen rising from the depths with olivine in the upper mantle, which has not been done before. Program GEMS was used for modeling calculations. The influence of the hydrogen amount on the serpentinization process at T = 323.15 ÷ 593.15 K and P = 3?107 ÷ 3?108 Pa has been estimated. The initial composition of the system was set as 1 mol of olivine (Fe0.1Mg0.9SiO4). The amount of added hydrogen was set as 1, 500, and 5000 mol. The water was not specified as a composition of the initial system. The simulation showed that hydrogen can cause the serpentinization process, which indicates in favor of the hypothesis about deep hydrogen sources, although it is not 100% proof of this.  相似文献   
4.
The hydrogen-producing strain PROH2 pertaining to the genus Clostridium was successfully isolated from a shallow submarine hydrothermal chimney (Prony Bay, New Caledonia) driven by serpentinization processes. Cell biomass and hydrogen production performances during fermentation by strain PROH2 were studied in a series of batch experiments under various conditions of pH, temperature, NaCl and glucose concentrations. The highest hydrogen yield, 2.71 mol H2/mol glucose, was observed at initial pH 9.5, 37 °C, and glucose concentration 2 g/L, and was comparable to that reported for neutrophilic clostridial species. Hydrogen production by strain PROH2 reached the maximum production rate (0.55 mM-H2/h) at the late exponential phase. Yeast extract was required for growth of strain PROH2 and improved significantly its hydrogen production performances. The isolate could utilize various energy sources including cellobiose, galactose, glucose, maltose, sucrose and trehalose to produce hydrogen. The pattern of end-products of metabolism was also affected by the type of energy sources and culture conditions used. These results indicate that Clostridium sp. strain PROH2 is a good candidate for producing hydrogen under alkaline and mesothermic conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号