首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6221篇
  免费   380篇
  国内免费   97篇
电工技术   307篇
综合类   216篇
化学工业   2738篇
金属工艺   93篇
机械仪表   104篇
建筑科学   137篇
矿业工程   243篇
能源动力   1867篇
轻工业   119篇
水利工程   8篇
石油天然气   311篇
武器工业   4篇
无线电   16篇
一般工业技术   131篇
冶金工业   151篇
原子能技术   150篇
自动化技术   103篇
  2024年   5篇
  2023年   76篇
  2022年   147篇
  2021年   190篇
  2020年   209篇
  2019年   213篇
  2018年   159篇
  2017年   160篇
  2016年   170篇
  2015年   165篇
  2014年   392篇
  2013年   386篇
  2012年   416篇
  2011年   523篇
  2010年   383篇
  2009年   367篇
  2008年   286篇
  2007年   372篇
  2006年   266篇
  2005年   239篇
  2004年   224篇
  2003年   215篇
  2002年   125篇
  2001年   123篇
  2000年   143篇
  1999年   111篇
  1998年   107篇
  1997年   69篇
  1996年   84篇
  1995年   66篇
  1994年   53篇
  1993年   41篇
  1992年   30篇
  1991年   18篇
  1990年   16篇
  1989年   14篇
  1988年   9篇
  1987年   12篇
  1986年   3篇
  1985年   29篇
  1984年   22篇
  1983年   36篇
  1982年   11篇
  1980年   5篇
  1977年   2篇
  1951年   6篇
排序方式: 共有6698条查询结果,搜索用时 15 毫秒
1.
Steam reforming of liquid hydrocarbon fuels is an appealing way for the production of hydrogen. In this work, the Rh/Al2O3 catalysts with nanorod (NR), nanofiber (NF) and sponge-shaped (SP) alumina supports were successfully designed for the steam reforming of n-dodecane as a surrogate compound for diesel/jet fuels. The catalysts before and after reaction were well characterized by using ICP, XRD, N2 adsorption, TEM, HAADF-STEM, H2-TPR, CO chemisorption, NH3-TPD, CO2-TPD, XPS, Al27 NMR and TG. The results confirmed that the dispersion and surface structure of Rh species is quite dependent on the enclosed various morphologies. Rh/Al2O3-NR possesses highly dispersed, uniform and accessible Rh particles with the highest percentage of surface electron deficient Rh0 active species, which due to the unique properties of Al2O3 nanorod including high crystallinity, relatively large alumina particle size, thermal stability, and large pore volume and size. As a consequent, Rh/Al2O3-NR catalyst exhibited superior catalytic activity towards steam reforming reactions and hydrogen production rate over other two catalysts. Especially, Rh/Al2O3-NR catalyst showed the highest hydrogen production rate of 87,600 mmol gfuel?1 gRh?1min?1 among any Rh-based catalysts and other noble metal-based catalysts to date. After long-term reaction, a significant deactivation occurred on Rh/Al2O3–NF and Rh/Al2O3-SP catalysts, due to aggregation and sintering of Rh metal particles, coke deposition and poor hydrothermal stability of nanofibrous structure. In contrast, the Rh/Al2O3-NR catalyst shows excellent reforming stability with negligible coke formation. No significantly sintering and aggregation of the Rh particles is observed after long-term reaction. Such great catalyst stability can be explained by the role of hydrothermal stable nanorod alumina support, which not only provides a unique environment for the stabilization of uniform and small-size Rh particles but also affords strong surface basic sites.  相似文献   
2.
On-site hydrogen production through steam-methane reforming (SMR) from city gas or natural gas is believed to be a cost-effective way for hydrogen-based infrastructure due to high cost of hydrogen transportation. In recent years, there have been a lot of on-site hydrogen fueling stations under design or construction in China. This study introduces current developments and technology prospects of skid-mounted SMR hydrogen generator. Also, technical solutions and economic analysis are discussed based on China's first on-site hydrogen fueling station project in Foshan. The cost of hydrogen product from skid-mounted SMR hydrogen generator is about 23 CNY/kg with 3.24 CNY/Nm3 natural gas. If hydrogen price is 60 CNY/kg, IRR of on-site hydrogen fueling station project reaches to 10.8%. While natural gas price fall to 2.3 CNY/Nm3, the hydrogen cost can be reduced to 18 CNY/kg, and IRR can be raised to 13.1%. The conclusion is that skid-mounted SMR technology has matured and is developing towards more compact and intelligent design, and will be a promising way for hydrogen fueling infrastructures in near future.  相似文献   
3.
Hydrogen production by biogas conversion represent a promising solution for reduction of fossil CO2 emissions. In this work, a detailed techno-economic analysis was performed for decarbonized hydrogen production based on biogas conversion using calcium and chemical looping cycles. All evaluated concepts generate 100,000 Nm3/h high purity hydrogen. As reference cases, the biogas steam reforming design without decarbonization and with CO2 capture by gas-liquid chemical absorption were also considered. The results show that iron-based chemical looping design has higher energy efficiency compared with the gas-liquid absorption case by 2.3 net percentage points as well as a superior carbon capture rate (99% vs. 65%). The calcium looping case shows a lower efficiency than chemical scrubbing, with about 2.5 net percentage points, but the carbon capture rate is higher (95% vs. 65%). The hydrogen production cost increases with decarbonization, the calcium looping shows the most favourable situation (37.14 €/MWh) compared to the non-capture steam reforming case (33 €/MWh) and MDEA and iron looping cases (about 42 €/MWh). The calcium looping case has the lowest CO2 avoidance cost (10 €/t) followed by iron looping (20 €/t) and MDEA (31 €/t) cases.  相似文献   
4.
In this study, lignin was gasified in supercritical water with catalysis of CuO–ZnO synthesized by deposition precipitation, co-precipitation and sol-gel methods. Sol-gel synthesized CuO–ZnO showed the highest catalytic performance, and the gasification efficiency was increased by 37.92% with it. The XRD, SEM-EDS and N2 adsorption/desorption analysis showed that the priority of the sol-gel catalyst was the smallest crystallite size, largest specific surface area and high dispersion. For sol-gel synthesized CuO–ZnO, the increase of CuO/ZnO ratio improved the gasification efficiency but reduced H2 selectivity. And the catalytic activity was reduced with the calcination temperature above 600 °C due to enlarged crystallites and reduced pores. During sol-gel preparation, both the addition of ethanol and PEG in the solvent reduced the agglomeration and improved the catalytic activity. With CuO–ZnO prepared with 1 g PEG + water as the solvent, the highest H2 yield of 6.86 mol/kg was obtained, which was over 1.5 times of that without catalyst.  相似文献   
5.
Biomass gasification technology under microwave irradiation is a new and novel method, and the energy conversion performances during the process play a guiding role in improving the energy conversion efficiencies and developing the gasification simulation models. In order to improve the energy utilization efficiency of microwave biomass gasification system, this study investigated and presented the energy conversion performances during biomass gasification process under microwave irradiation, and these were materialized through detailing (a) the energy conversion performance in the microwave heating stage, and (b) the energy conversion performance in the microwave assisted biomass gasification stage. Different forms of energies in the biomass microwave gasification process were calculated by the method given in this study based on the experimental data. The results showed that the useful energy (energy in silicon carbide (SiC), 18.73 kJ) accounted for 31.22% of the total energy input (electrical energy, 60.00 kJ) in the heating stage, and the useful energy (energy in the products, 758.55 kJ) accounted for 63.41% of the total energy input (electrical and biomass energy, 1196.28 kJ) in the gasification stage. During the whole biomass gasification process under microwave irradiation, the useful energy output (energy in the products, 758.55 kJ) accounted for 60.38% of the total energy input (electrical and biomass energy, 1256.28 kJ), and the energy in the gas (523.40 kJ) product played a dominate role in product energy (758.55 kJ). The energy loss mainly included the heat loss in the gas flow (89.20 kJ), magnetron loss (191.80 kJ) and microwave dissipation loss (198.00 kJ), which accounted for 7.10%, 15.27% and 15.76% of the total energy, respectively. The contents detailed in this study not only presented the energy conversion performances during microwave assisted gasification process but also supplied important data for developing gasification simulation models.  相似文献   
6.
In the future, hydrogen will be an important energy carrier and industrial raw material. Catalytic steam reforming of bio-oils is a promising and economically viable technology for hydrogen production. However, during the reforming process, the catalysts are rapidly deactivated due to coke formation and sintering. Thus, maintaining the activity and stability of catalysts is the key issue in this process. Optimized operation conditions could extend the catalyst lifetime by affecting the coke morphology or promoting coke gasification. This article summarizes the recent developments in the field of catalytic steam reforming of bio-oils, focusing on the operation conditions, the properties of the catalysts, and the effects of the catalyst supports. The expected insights into the catalytic steam reforming of bio-oils will provide further guidance for hydrogen production from bio-oils.  相似文献   
7.
As an industrial pollutant, tar derived from biomass gasification is used as the precursor for fabricating a novel carbon-metal hydroxides composite electrode. A slurry (the mixture of tar, KOH and melamine) is daubed uniformly onto the nickel foam, which is directly carbonized to form NPC@LDH electrode material. This electrode is further coated with NiCo-LDH nanosheets using an electrodeposition method to form NF@NPC@LDH. The newly made NF@NPC@LDH electrode exhibits a high specific capacity of 9.6 F cm−2 at a current density of 2 mA cm−2 and good rate performance (55.3% retention). Furthermore, a hybrid NF@NPC@LDH//NF@PC all-solid-state supercapacitor is fabricated, and the device exhibits high energy density of 1.28 mWh cm−3 at a power density of 8.04 mW cm−3, low resistance and good cycling stability.  相似文献   
8.
结合工程特点及工艺流程,阐述了300 kt/a聚丙烯装置的布置原则,管道、管架设计要点和方法,以及需要注意的问题。  相似文献   
9.
The evolution of the properties of a REUSY zeolite contained in a fluid cracking catalyst was investigated under laboratory steam deactivation procedures and in age fractions of the corresponding equilibrium catalyst (Ecat). The aging pattern, defined by the evolution of the zeolite surface area (ZSA) related to the decrease of the unit cell size (UCS), was similar between lab-steamed zeolites and Ecat fractions. A sharp drop in ZSA occurred at ca. 2.430 nm UCS. A study done by FT-IR spectroscopy suggested that zeolite dealumination initially took place more extensively on the sodalite cages and double six-member rings (D6R) of the structure and that the final collapse of the zeolite framework occurred through destruction of the 12-member rings (12M). This can be explained by a crystal fracture and break down process and disassembling of the sodalite cages in the faujasite structure. NH3 microcalorimetry showed that strong acid sites in faujasites are destroyed by steam aging, but this effect does not lead to a reduction in the cracking activity of the Ecat form. The microactivity test (MAT) showed that the specific activity declined sharply at 2.430 nm UCS. Differences in product selectivity were related to the extent of damage of the zeolite, extra-framework alumina and mesoporosity. While further aging canceled the effect attributed to extra-framework alumina differences attributed to mesoporosity increased.  相似文献   
10.
适用于微机的核蒸汽发生器热工水力分析程序—SGTH—2   总被引:1,自引:0,他引:1  
本程序用于计算核蒸汽发生器的热工水力分布参数以及一次侧流动压降、二次侧自然循环和稳态特性,将本程序的计算结果与法国对同型号蒸汽发生器的实测数据以及用 ATHOS 程序的相应计算结果进行比较,表明主要热工水力参数能令人满意地吻合。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号