首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   672篇
  免费   10篇
  国内免费   21篇
电工技术   3篇
综合类   23篇
化学工业   42篇
金属工艺   167篇
机械仪表   281篇
建筑科学   5篇
矿业工程   38篇
能源动力   4篇
轻工业   11篇
水利工程   7篇
石油天然气   5篇
武器工业   7篇
无线电   8篇
一般工业技术   79篇
冶金工业   14篇
原子能技术   3篇
自动化技术   6篇
  2024年   1篇
  2023年   5篇
  2022年   14篇
  2021年   16篇
  2020年   18篇
  2019年   12篇
  2018年   28篇
  2017年   31篇
  2016年   22篇
  2015年   18篇
  2014年   31篇
  2013年   57篇
  2012年   21篇
  2011年   14篇
  2010年   26篇
  2009年   49篇
  2008年   34篇
  2007年   39篇
  2006年   48篇
  2005年   29篇
  2004年   34篇
  2003年   20篇
  2002年   29篇
  2001年   17篇
  2000年   13篇
  1999年   17篇
  1998年   6篇
  1997年   24篇
  1996年   7篇
  1995年   5篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
排序方式: 共有703条查询结果,搜索用时 15 毫秒
1.
Abrasive water jet technology can be used for micro-milling using recently developed miniaturized nozzles. Abrasive water jet (AWJ) machining is often used with both the nozzle tip and workpiece submerged in water to reduce noise and contain debris. This paper compares the performance of submerged and unsubmerged abrasive water jet micro-milling of channels in 316L stainless steel and 6061-T6 aluminum at various nozzle angles and standoff distances. The effect of submergence on the diameter and effective footprint of AWJ erosion footprints was measured and compared. It was found that the centerline erosion rate decreased with channel depth due to the spreading of the jet as the effective standoff distance increased, and because of the growing effect of stagnation as the channel became deeper. The erosive jet spread over a larger effective footprint in air than in water, since particles on the jet periphery were slowed much more quickly in water due to increased drag. As a result, the width of a channel machined in air was wider than that in water. Moreover, it was observed that the instantaneous erosion rate decreased with channel depth, and that this decrease was a function only of the channel cross-sectional geometry, being independent of the type of metal, the jet angle, the standoff distance, and regardless of whether the jet was submerged or in air, in either the forward or backward directions. It is shown that submerged AWJM results in narrower features than those produced while machining in air, without a decrease in centerline etch rate.  相似文献   
2.
Abrasive jet micro-machining (AJM) uses compressed air carrying abrasive solid particles to micro-machine a variety of features into surfaces. If the feature sizes are less than the size of the abrasive jet footprint, then a patterned erosion-resistant mask is used to protect the substrate material, leaving exposed areas to define the features. Previous investigations have revealed a ‘blast lag’ phenomenon in which, for the same dose of abrasive particles, narrower mask openings lead to channels that are shallower than wider ones. Blast lag occurs when using AJM on brittle substrates because of the natural tendency to rapidly form a V-shaped cross-sectional profile which inhibits abrasive particle strikes on the narrow vertex at the feature centerline. In this paper, the blast lag phenomenon is studied when using AJM to machine a network of microfluidic channels. It is found that, in some cases, differences in blast lag occurring at channel intersections and within the channels themselves, can lead to channel networks of nonuniform depth. A previously developed surface evolution model is adapted to allow prediction of the onset of blast lag in the channels and intersections and thus explain these differences. Finally, methods to eliminate the differences are discussed.  相似文献   
3.
几种火焰喷焊自熔性合金层的耐磨性能   总被引:7,自引:0,他引:7  
研究了不同自熔性合金粉末火焰喷焊层的显微组织与抗磨粒磨损性能,并对其磨面形貌进行了SEM观察分析。结果表明,在Ni60自熔性合金中加入适量的镍包WC粉末可明显提高其喷焊层的抗磨粒磨损性能。当WC的加入量为35%(wt)左右时,该喷焊层与60Si2Mn调质钢相比,相对的耐磨性可提高6倍以上。  相似文献   
4.
Waterjet guided laser processing is an internationally patented technique based on guiding a laser inside a thin, high-speed waterjet. The process combines the advantages of laser processing with those of waterjet cutting and offers promise as a method for processing thin and heat sensitive materials with a high degree of precision. An improved understanding of the complex interaction between laser, waterjet, and workpiece is required to enable the process to achieve its potential. A model for waterjet guided laser grooving of silicon is presented that treats the energy input of the laser, the cooling effect of the waterjet, and the melting and removal of the silicon. The thermal process is represented in detail in the new method. The model is validated by comparisons of simulation and experimental results, and the simulation provides insight regarding the details of the interactions among laser, waterjet, and workpiece.  相似文献   
5.
In the present experimental study, abrasive water jet (AWJ) cutting tests were conducted on D2 steel by different jet impingement angles and abrasive mesh sizes. The experimental data was statistically analyzed using the simos–grey relational method and ANOVA test. In addition, the outcome of influencing cutting parameters, namely jet pressure, jet impingement angle, and abrasive mesh size on the different response parameters, namely, the jet penetration, material removal rate, taper ratio, roughness, and topography, were studied. Micro-hardness test and surface morphology analysis were employed to examine the D2 cut surfaces at different AWJ cutting conditions. The chemical element study was performed to determine the abrasive particle contamination in the AWJ kerf wall cut surfaces. The ANOVA test result indicated the jet pressure and jet impingement angle as the influencing process parameters affecting the various performance characteristics of AWJ cutting. The overall AWJ cutting performance of the D2 steel has been improved through proper identification of the optimal process parameter settings, namely jet pressure 225?MPa, abrasive mesh size #100, and jet impingement angle 70° by the simos–grey relational analysis.  相似文献   
6.
Development in manufacturing technology enhances the mechanical behavior of machined parts and improves the surface finish with high precision, which conveys the progressive importance of magnetic abrasive finishing (MAF) process. In current research work, magnetic abrasive particles were used as finishing tools during the MAF process. However, these magnetic abrasives are fabricated by special techniques, i.e., the adhesive bonding-based method, the sintering method, the plasma-based method and so on. The present study explores the basic finishing characteristics of the magnetic abrasive produced by the sintering process. After the sintering process, improved quality of magnetic abrasives was obtained, where the abrasive particle sticks on the base metal matrix. The abrasive particle used is alumina powder and the magnetic particle is iron powder. Experiments were performed on Stainless Steel 202 to inspect the sound effects of several process parameters such as rotational speed, electromagnet voltage, machining gap and abrasive particle size on machining performance. Apart from that, surface roughness was also measured, which revealed the influence of the abrasive particle on the machined surface in terms of surface finish. It is observed from this study that appropriate size of magnetic abrasive particle optimizes the surface finish.  相似文献   
7.
This article investigates the 3D surface topography and 2D roughness profiles, and micrographs were analyzed in the abrasive water jet (AWJ) cutting of AISI D2 steel kerf wall cut surfaces by varying water jet pressures and jet impact angles. In 3D surface topography, roughness parameters such as Sq, Ssk, Sp, Sv, Sku, Sz, and Sa were improved by various jet impact angles with different water jet pressures. However, the roughness parameters Ssk and Sku strongly depend on the water jet pressure and jet impact angle. This is confirmed by kerf wall cut profile structures. Fine irregularities of peaks and valleys are found on the AWJ cut surfaces, as evident from 2D roughness profiles. The scanning electron microscope micrographs confirm the production of an upper zone not very much damaged and a lower striation free bottom zone, by using the jet impact angle of 70° with a water jet pressure of 200?MPa. Finally, the results indicate a jet impact angle of 70° maintaining the surface integrity of D2 steel better than normal jet impact angle of 90°. The results are useful in mating applications subjected to wear and friction. This has resulted in enhancement of the functionality of the AWJ machined D2 steel components.  相似文献   
8.
In this paper we present the work related to the parameters identification for abrasive waterjet milling (AWJM) model that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and the large number of the model parameters, we use an automatic differentiation software tool. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model errors and 3D time dependent model with variations of the jet feed speed. This approach gives us a good opportunity to identify the optimal model parameters and predict the surface profile both with self-generated data and measurements obtained from the real production. Considering different types of model errors allows us to receive the results acceptable in manufacturing and to expect the proper identification of unknowns.  相似文献   
9.
This paper covers the development of a multilayer icebonded abrasive polishing (IBAP) tool for multistage polishing of Ti-6Al-4V alloy specimens based on a systematic study that determined the number of layers, thickness of each layer, and the type, size and concentration of abrasives in each layer. Based on this study, a three-layered IBAP tool with the bottom layer consisting of soft aluminum oxide abrasives of 3?µm size with 5% concentration, the middle layer with moderately hard silicon carbide abrasives of 8?µm size with 10% concentration and the top layer with hard boron carbide abrasives of 15?µm size with 30% concentration was formulated for ultrafine finishing of Ti-6Al-4V alloy specimen in a single setup. The performance of the three-layered IBAP tool assessed in terms of finish and morphology over the work surface showed 81% improvement in surface finish, showing its effectiveness over a single-layered IBAP tool. Polishing studies have clearly demonstrated the generation of ultrafine surfaces, yielding a finish of 37?nm while the morphological studies on the polished surface have shown a nearly scratch-free surface on the Ti-6Al-4V alloy.  相似文献   
10.
《材料科学技术学报》2019,35(5):917-925
The tribological behavior of Al0.25CoCrFeNi high-entropy alloy (HEA) sliding against Si3N4 ball was investigated from room temperature to 600 ℃. The microstructure of the alloys was characterized by simple FCC phase with 260 HV. Below 300 ℃, with increasing temperature, the wear rate increased due to high temperature softening. The wear rate remained stabilized above 300 ℃ due to the anti-wear effect of the oxidation film on the contact interface. The dominant wear mechanism of HEA changed from abrasive wear at room temperature to delamination wear at 200 ℃, then delamination wear and oxidative wear at 300 ℃ and became oxidative above 300 ℃. Moreover, the adhesive wear existed concomitantly below 300 ℃.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号