首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
轻工业   2篇
  2011年   1篇
  2009年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
In the present study, packaging of a surface mould ripened cheese under 2 atm: MAP-A (0% O2, 27 ± 6% CO2) and MAP-B (2 ± 1% O2, 19 ± 2% CO2) was studied at 12 °C and the results were compared with the existing commercial packaging system (wrapped with waxed paper and inserted in cardboard box). Quality parameters such as colour, texture, pH and moisture content were evaluated after 0, 7 and 14 days of storage, together with a sensory evaluation. Tuckey test and principal components analysis showed that after 14 days of storage, the best conditions for the preservation of the cheeses corresponded to MAP-B. The predicted shelf-life was found to be 14, 6 and 17 days for control, MAP-A and MAP-B respectively. It was concluded that modified atmosphere packaging of surface mould ripened cheese with low levels of O2 (1-3%) and relatively high levels of CO2 (17-21%) can be used to extend the shelf-life of soft cheese; however the package has to be suitably designed, as total loss of O2 (as in MAP-A) would shorten the shelf-life.  相似文献   
2.
Gas exchange dynamics in modified atmosphere packaging of soft cheese   总被引:1,自引:0,他引:1  
Modified Atmosphere Packaging (MAP) is a shelf-life extension technique that has been widely applied to horticultural, meat and dairy products. It relies on the interaction between product, packaging material and environment, which determines the gas composition inside the package at steady state. Therefore, MAP design needs to take into consideration O2 consumption and CO2 production rates of the product and the mass transfer coefficients for the gas exchange through the packaging material and how they are affected by environmental factors such as storage temperature. In this work, a mathematical model was developed for designing MAP systems for a soft cheese (camembert-type). The model was used to evaluate the effect of perforations on O2 and CO2 concentrations of package containing cheese, at constant and varying storage temperatures. The predicted gas composition was compared with those obtained experimentally at 293 and 285 K with packages having different numbers of perforations (1), (2) and (3). Experimental values of gas composition observed at steady state with one perforation were 0.050 and 0.148 (v/v) at 285 K for O2 and CO2 respectively, and 0.003 and 0.207 (v/v) at 293 K. Gas composition was found to take values between 0.009–0.058 for O2 and 0.154–0.200 for CO2, when the packages with a single perforation were exposed to storage temperature varying between 285 and 293 K during 14 days of storage. The model developed was able to accurately predict the gas exchange dynamics of the package throughout the storage period whether the temperature of storage was constant or not.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号