首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1595篇
  免费   7篇
  国内免费   34篇
电工技术   10篇
综合类   6篇
化学工业   859篇
金属工艺   133篇
机械仪表   21篇
建筑科学   10篇
矿业工程   2篇
能源动力   176篇
轻工业   17篇
石油天然气   6篇
武器工业   1篇
无线电   38篇
一般工业技术   324篇
冶金工业   15篇
原子能技术   9篇
自动化技术   9篇
  2024年   1篇
  2023年   20篇
  2022年   42篇
  2021年   65篇
  2020年   48篇
  2019年   42篇
  2018年   63篇
  2017年   51篇
  2016年   44篇
  2015年   67篇
  2014年   117篇
  2013年   136篇
  2012年   66篇
  2011年   164篇
  2010年   147篇
  2009年   107篇
  2008年   86篇
  2007年   94篇
  2006年   80篇
  2005年   79篇
  2004年   39篇
  2003年   27篇
  2002年   28篇
  2001年   6篇
  2000年   3篇
  1999年   9篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
  1988年   1篇
排序方式: 共有1636条查询结果,搜索用时 15 毫秒
1.
Ferrites are an important group of magnetic materials which are used as absorbers. The incorporation of ferrite and conducting polymer achieves great enhancement in microwave absorption properties. The nanocomposites of hexagonal ferrites embedded by conducting polymers such as polypyrrole, polyaniline and polythiophene (PTH) have been paid much attention. In the present study, strontium hexagonal ferrite doped by Zr and Zn with the final formula of SrFe12-x(ZrZn)0.5xO19 considering x = 0.9 and embedded by PTH was produced to achieve a nanocomposite with the highest microwave absorbing ability. In this study, after synthesis of SrFe12O19(ZrZn)0.5xO19 and PTH, the nanocomposite was prepared by in situ polymerization. Wrapping the ferrite particles and PTH chains could form nanocomposite properly, and therefore acceptable interactions were observable between SrFe12-x(ZrZn)0.5xO19ferrite particles and PTH polymer chains in the composites. Assessing the X-ray diffraction (XRD) patterns of SrFe12-x(ZrZn)0.5xO19, PTH, and PTH/SrFe12-x(ZrZn)0.5xO19 nanocomposite indicated that the PTH characteristic peak shifts slightly and its peak intensity reduces, which may be attribute to the coating of PTH polymer chains onto SrFe12-x(ZrZn)0.5xO19 particles. We revealed also lower magnetic properties in the obtained nanocomposite. The morphological assessment also suggested that PTH could effectively coat the SrFe12-x(ZrZn)0.5xO19 particles. The synergistic effect of SrFe12-x(ZrZn)0.5xO19 particle plus PTH leads to microwave absorption percentage higher than 95% by PTH/SrFe12-x(ZrZn)0.5xO19 nanocomposite. Overall, nanocomposite creating by coupling interaction between SrFe12-x(ZrZn)0.5xO19 particles (x = 0.9) and PTH can effectively lead to achieve the highest rate of absorption of electromagnetic waves.  相似文献   
2.
3.
《Ceramics International》2020,46(7):9086-9095
In this research, hydroxyapatite (HA)-based ceramics were produced as suitable ceramic implants for orthopedic applications. To improve the physical, mechanical, electrical and biological properties of pure HA, we developed composite scaffolds of HA-barium titanate (BT) by cold isostatic pressing and sintering. Microstructure, crystal phases, and molecular structure were analyzed by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), respectively. Bulk density values were measured using the Archimedes method. The effect of different percentages of BT on cell proliferation, viability, and ALP activity of dental pulp stem cells (DPSCs) was assessed by ProstoBlue assay, Live/Dead staining, and p-NPP assay. The obtained results indicate that the HA-BT scaffolds possess higher compressive strength, toughness, density, and hardness compared with pure HA scaffolds. After immersing the scaffold in SBF solution, more deposited apatite appeared on the HA-BT, which results in rougher surface on this scaffold thanpure HA. Electrical properties of HA in the presence of BT are improved. Based on the results of cell culture experiments, composites containing 40, 50 and 60 %wt of BT have excellent biocompatibility, with the best results occurring for the sample with 50 %wt BT.  相似文献   
4.
Polyimide/titania (PI/TiO2) nanocomposite films have been successfully fabricated through the in situ formation of TiO2 within a PI matrix via sol–gel method. Poly(amic acid) (PAA), which is the precursor of PI, was successfully synthesized by mixing pyromellitic dianhydride (PMDA), with equimolar amount of a diamine monomer having a pendent benzoxazole unit and two flexible ether linkages in N,N-dimethylformamide (DMF) solvent. Tetraethyl orthotitanate [Ti(OEt)4] and acetylacetone were then added to the resulted PAA. After imidization at high temperature, PI/TiO2 hybrid films were formed. The structure and morphology of the hybrid nanocomposites with different titania contents (0 wt%, 5 wt%, 10 wt%, and 15 wt%) were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy. The results indicate that the TiO2 nanoparticles were homogeneously dispersed in the hybrid films. The thermogravimetric analysis of nanocomposites confirms the improvement in the thermal stability with the increase in the percentage of titania nanoparticle. Transmission electron microscopy showed that the nanoparticles with an average diameter of 25–40 nm were dispersed in the polymer matrix.  相似文献   
5.
Successful fabrication of glass-based hybrid nanocomposites (GHNCs) incorporating Ag, core-shell CdSe/CdS and CdSxSe1?x nanoparticles (NPs) is herein reported. Both metallic (Ag) and semiconductor (CdSe/CdS) NPs were pre-synthesized, suspended in colloids and added into the sol-gel reaction medium which was used to fabricate the GHNCs. During fabrication of the nanocomposites a fraction (20–60%) of core-shell CdSe/CdS NPs was alloyed into CdSxSe1?x (0.20 < x < 0.35) NPs without changing morphology. Modulation of in situ alloying is possible via the relative content of organics added into the sol-gel protocol. Within colloids Ag (core-shell CdSe/CdS) NPs presented average diameter and polydispersity index of 49.5 nm (4.2 nm) and 0.41 (0.21), respectively. On the other hand, the Ag (core-shell CdSe/CdS) NPs’ average diameter and polydispersity index assessed from the GHNCs were respectively 51.5 nm (4.1 nm) and 0.43 (0.25), revealing negligible aggregation of the nanophases within the glass template. The new GHNCs herein introduced presented two independent excitonic transitions associated to homogenously dispersed semiconductor NPs, peaking around 420 nm (core-shell CdSe/CdS) and 650 nm (CdSxSe1?x) and matching the plasmonic resonance (Ag NPs) in the 400–500 nm range. We envisage that the new GHNCs represent very promising candidates for superior light manipulation while illuminated with multiple laser beams in quantum interference-based devices.  相似文献   
6.
Magnesium (Mg)-based nanocomposites owing to their low density and biocompatibility are being targeted for transportation and biomedical sectors. In order to support a sustainable environment, the prime aim of this study was to develop non-toxic magnesium-based nanocomposites for a wide spectrum of applications. To support this objective, cerium oxide nanoparticles (0.5?vol%, 1?vol%, and 1.5?vol%) reinforced Mg composites are developed in this study using blend-press-sinter powder metallurgy technique. The microstructural studies exhibited limited amounts of porosity in Mg and Mg-CeO2 samples (< 1%). Increasing presence of CeO2 nanoparticles (up to 1.5?vol%) led to a progressive increase in microhardness, dimensional stability, damping capacity and ignition resistance of magnesium. The compressive strengths increased with the increasing addition of the nanoparticles with a significant enhancement in the fracture strain (up to ~48%). Superior energy absorption was observed for all the composite samples prior to compressive fracture. Further, enhancement in thermal, mechanical and damping characteristics of pure Mg is correlated with microstructural changes due to the presence of the CeO2 nanoparticles.  相似文献   
7.
A photochromic nanocomposite based on Keggin structure phosphomolybdic acid (PMoA) well dispersed in polyethyleneglycol (PEG) was fabricated. TEM image showed that PMoA nanoparticles with narrow size distribution were finely dispersed in polymer matrix. FT-IR results showed that the Keggin geometry of polyoxometalates was still preserved inside the composites and strong coulombic interaction was built between PMoA and polymer matrix. Under UV irradiation, the film was reduced photochemically to yield a blue species, which was in accordance with a charge-transfer mechanism.  相似文献   
8.
9.
Crystallization and thermoelectric properties of poly(ε-caprolactone) (PCL)/poly(vinyl butyral) (PVB)/montmorillonite (MMT) nanocomposites containing carbon black (CB) have been studied as a functions of a small amount of amorphous PVB content and a wide range of molecular weight of PVB. X-ray diffraction data of PCL/PVB/MMT nanocomposites indicates most of the swellable silicate layers are exfoliated and randomly dispersed into PCL/PVB system. The band spacings of PCL spherulites in PCL/PVB/MMT nanocomposites decrease with increasing PVB content, and this indicates that increasing the PVB content greatly shortens the period of lamellar twisting. The presence of 1 wt% MMT and higher molecular weight of PVB also shorten the period of PCL lamellar twisting. Nucleation and crystallization parameters, such as growth rate G and Avrami exponent n, can be determined by using POM and DSC isothermally crystallized at 41 °C. For samples with the same CB content, the intensity of positive temperature coefficient (PTC) (IPTC, defined as the ratio of peak resistivity to resistivity at room temperature) of the nanocomposites was increased as the content and the molecular weight of PVB increases. The change of the PTC property related to the morphological difference (i.e. period of lamellar twisting) in the nanocomposites can be discussed.  相似文献   
10.
Si3N4陶瓷材料由于具有很好的高温性能及高的力学性能,而被广泛地用于结构陶瓷,如切削刀具等。然而,因为其对缺陷很敏感,故易受灾难性的失效。人们发展了多种Si3N4增韧陶瓷,其中自增韧由于一些优异的性能越来越受到人们的重视。在此文中,着重介绍了影响Si3N4陶瓷长颗粒(柱状晶)晶粒生成的因素,并介绍了国内外对长颗粒Si3N4晶的控制研究。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号