首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9559篇
  免费   145篇
  国内免费   257篇
电工技术   202篇
技术理论   1篇
综合类   289篇
化学工业   1866篇
金属工艺   346篇
机械仪表   644篇
建筑科学   362篇
矿业工程   78篇
能源动力   290篇
轻工业   1035篇
水利工程   9篇
石油天然气   96篇
武器工业   15篇
无线电   1268篇
一般工业技术   1508篇
冶金工业   748篇
原子能技术   720篇
自动化技术   484篇
  2024年   6篇
  2023年   70篇
  2022年   111篇
  2021年   154篇
  2020年   136篇
  2019年   84篇
  2018年   108篇
  2017年   153篇
  2016年   165篇
  2015年   226篇
  2014年   337篇
  2013年   453篇
  2012年   385篇
  2011年   838篇
  2010年   591篇
  2009年   555篇
  2008年   505篇
  2007年   586篇
  2006年   612篇
  2005年   500篇
  2004年   450篇
  2003年   365篇
  2002年   385篇
  2001年   237篇
  2000年   227篇
  1999年   233篇
  1998年   192篇
  1997年   255篇
  1996年   212篇
  1995年   161篇
  1994年   130篇
  1993年   109篇
  1992年   94篇
  1991年   99篇
  1990年   83篇
  1989年   62篇
  1988年   28篇
  1987年   13篇
  1986年   14篇
  1985年   16篇
  1984年   10篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有9961条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(12):16808-16812
Flash sintering has been reported in various ceramics. Nevertheless, anion and cation conductors exhibit different flash-sintering behaviors, and the interaction mechanism between the conductive species and the sintering environment has remained unclear. Herein, we report the flash-sintering phenomena of a typical cation conductor, Na3Zr2(SiO4)2(PO4) with anode region surrounded by air and NaNO3 environments. The results prove that the ionic behavior and joule heating distribution can be controlled by changing the electrode environment. Four possible scenarios describing the ion migration behavior and interaction with the environment are proposed for providing a guidance for controlling the ion interaction behavior during flash sintering.  相似文献   
2.
In this work, 0.5TRPO•0.5Gd2Zr2O7 ceramic with an average grain size of only ∼15 nm was prepared by a high pressure (5 GPa/520 °C) sintering method. Phase evolutions and microstructure changes of the as-fabricated super nano and micron-grained ceramics under a high-dose displacement damage induced by 300 keV Kr2+ ions were investigated. The results show that the super nano-grained ceramic has low degree of amorphization, obvious grain growth (2–3 times in grain size) and big Kr bubbles (10–68 nm) formation after irradiation. The micron-grained ceramic was severely amorphized after irradiation and many microcracks were formed parallel to its surface. The formation mechanism of Kr bubbles in the super nano-grained ceramic is on account of grain boundary diffusion and migration induced by the accumulation of the injecting Kr ions and irradiation defects. Nevertheless, microcracks formed in the micron-grained sample are caused by the accumulation of Kr atoms.  相似文献   
3.
We investigated some properties of the hydride Mg2FeH6 substituted with yttrium by a first principles calculation. Some experimental results showed that 4d transition metal, yttrium serves as a good catalyst for magnesium based hydrogen storage alloys, but there are a few theoretical studies about magnesium based hydrides substituted with it. Mg2FeH6 is regarded as a cheaper material than pure MgH2, while it is crystalized into Fm3m structure (space group 225). Although it has high hydrogen storage capacity, many investigations have not been devoted to it due to its extremely high thermodynamic stability. The yttrium substituted Mg2FeH6 exhibits very low energy of formation, and its desorption temperature, 75 °C is very suitable for practical hydrogen storage applications. Our results showed that Mg2FeH6 is destabilized effectively by yttrium substitution and introducing vacancy defects has additive effect to the improvement of dehydrogenation performance.  相似文献   
4.
Carbon nanotubes are the most promising reinforcement for high performance composites. Multiwall carbon nanotubes were directly grown onto the carbon fiber surface by catalytic thermal chemical vapor deposition technique. Multi-scale hybrid composites were fabricated using the carbon nanotubes grown fibers with epoxy matrix. Morphology of the grown carbon nanotubes was investigated using field emission scanning electron microscopy and transmission electron microscopy. The fabricated composites were subjected to impact tests which showed 48.7% and 42.2% higher energy absorption in Charpy and Izod impact tests respectively. Fractographic analysis of the impact tested specimens revealed the presence of carbon nanotubes both at the fiber surface and within the matrix which explained the reason for improved energy absorption capability of these composites. Carbon nanotubes presence at various cracks formed during loading provided a direct evidence of micro crack bridging. Thus the enhanced fracture strength of these composites is attributed to stronger fiber–matrix interfacial bonding and simultaneous matrix strengthening due to the grown carbon nanotubes.  相似文献   
5.
《Ceramics International》2015,41(7):8614-8622
SnO2–ZnO nanocomposite thin films, prepared by a simple carbothermal reduction based vapor deposition method, were irradiated with 8 MeV Si3+ ions for engineering the morphological and optical properties. The surface morphology of the nanocomposites was studied by atomic force microscopy (AFM), while the optical properties were investigated by photoluminescence spectroscopy (PL) and Raman spectroscopy. AFM studies on the irradiated samples revealed growth of nanoparticles at lower fluence and a significant change in surface morphology leading to the formation of nanosheets and their aggregates at higher fluences. A tentative mechanism underlying the observed ion induced evolution of surface morphology of SnO2–ZnO nanocomposite is proposed. PL studies revealed strong enhancement in the UV emissions from the nanocomposite thin film at lower fluence, while a drastic decrease in the UV emissions along with a significant enhancement in the defect emissions has been observed at higher fluences.  相似文献   
6.
Numerical simulation, using SILVACO-TCAD, is carried out to explain experimentally observed effects of different types of deep levels on the capacitance–voltage characteristics of p-type Si-doped GaAs Schottky diodes grown on high index GaAs substrates. Two diodes were grown on (311)A and (211)A oriented GaAs substrates using Molecular Beam Epitaxy (MBE). Although, deep levels were observed in both structures, the measured capacitance–voltage characteristics show a negative differential capacitance (NDC) for the (311)A diodes, while the (211)A devices display a usual behaviour. The NDC is related to the nature and spatial distribution of the deep levels, which are characterized by the Deep Level Transient Spectroscopy (DLTS) technique. In the (311)A structure only majority deep levels (hole traps) were observed while both majority and minority deep levels were present in the (211)A diodes. The simulation, which calculates the capacitance–voltage characteristics in the absence and presence of different types of deep levels, agrees well with the experimentally observed behaviour.  相似文献   
7.
Indium separation using ion exchange resins from acidic polymetallic and very diluted solutions are investigated. Since the selectivity of commercial ion exchange resins have proven to be too low for an effective separation from solutions with high content of other metals, Lewatit® TP 208 was impregnated with common extractants to enhance its properties. By resin impregnation with D2EHPA and Cyanex 272, not only the selective indium recovery was reached but also the resin capacity was increased approx. two times. The best loading and elution performance were shown by Cyanex 272-impregnated Lewatit® TP 208, increasing the indium purity in the eluate from 0.75 % to 85 %.  相似文献   
8.
Hydrothermally prepared zinc oxide nanorods are sulphonated (S–ZnO NR) and incorporated into 15% Sulphonated Poly (1,4-Phenylene Ether Ether Sulfone) (SPEES) to improve the hydrophilicity, water uptake and ion transfer capacity. Water uptake and ion transfer capacity increased to 34.6 ± 0.6% and 2.0 ± 0.05 meq g?1 from 29.8 ± 0.3% and 1.4 ± 0.04 meq g?1 by adding 7.5 wt% S–ZnO NR to SPEES. Morphological studies show the prepared S–ZnO NR is well dispersed in the polymer matrix. SPEES +7.5 wt% S–ZnO NR membrane exhibits optimum performance after three-weeks of continual operation in a fabricated microbial fuel cell (MFC) to produce a maximum power density of 142 ± 1.2 mW m?2 with a reduced biofilm compared to plain SPEES (59 ± 0.8 mW m?2), unsulphonated filler incorporated SPEES (SPEES + 7.5 wt% ZnO, 68 ± 1.1 mW m?2) and Nafion (130 ± 1.5 mW m?2) thereby suggesting its suitability as a sustainable and improved cation exchange membrane (CEM) for MFCs.  相似文献   
9.
Cyclic tension and bend tests were performed on heat-resistant 12Cr1MoV steel specimens in as-supplied condition as well as after Zr+ ion beam surface irradiation. Distinct differences in strain induced relief, as well in cracking pattern of modified surface layer were observed by optical microscopy and interference profilometry. Changes in subsurface layer are characterized by means of nano- and microindentation and fractography of fracture surfaces (with the help of scanning electron microscopy). It is shown that the main influence on mechanical properties is mostly induced by thermal treatment during irradiation rather than formation of a 2 μm thick layer doped with Zr. The differences in deformation behavior may be explained by physical mesomechanics concepts.  相似文献   
10.
The relatively low capacitance of negative electrodes, as compared to the capacitance of advanced positive electrodes, poses a serious problem, since this limits the development of asymmetric supercapacitor (SC) devices with a large voltage window and enhanced power-energy characteristics. We fabricate negative SC electrodes with a high capacitance that match the capacitance of advanced positive electrodes at similar active mass loadings, as high as 37?mg?cm?2. Cyclic voltammetry, impedance spectroscopy, galvanostatic charge-discharge data and the power-energy characteristics of the asymmetric SC device exhibit good electrochemical performance for a voltage window of 1.6?V. Our approach involves the development and application of particle extraction through liquid-liquid interface (PELLI) methods, new extraction mechanisms and efficient extractors to synthesize α-FeOOH and β-FeOOH electrode materials. The use of PELLI allows agglomerate-free processing of powders, which facilitates their efficient mixing with multiwalled carbon nanotubes (MWCNT) and allows improved electrolyte access to the particle surface. Experiments to determine the properties of FeOOH-MWCNT composites provided insight into the influence of the electrode material and the structure of extractor molecules on the composite properties. The highest capacitance of 5.86?F?cm?2 for negative electrodes and low impedance were achieved using α-FeOOH-MWCNT composites and a 16-phosphonohexadecanoic acid (PHDA) extractor. This extractor allows adsorption on particles, not only at the liquid-liquid interface, but also in the bulk aqueous phase and can potentially be used as a capping agent for particle synthesis and as an extractor in the PELLI method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号