首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18688篇
  免费   2482篇
  国内免费   1487篇
电工技术   4079篇
综合类   1840篇
化学工业   590篇
金属工艺   252篇
机械仪表   1017篇
建筑科学   601篇
矿业工程   296篇
能源动力   448篇
轻工业   219篇
水利工程   195篇
石油天然气   197篇
武器工业   300篇
无线电   3920篇
一般工业技术   1157篇
冶金工业   420篇
原子能技术   219篇
自动化技术   6907篇
  2024年   56篇
  2023年   206篇
  2022年   351篇
  2021年   379篇
  2020年   572篇
  2019年   496篇
  2018年   489篇
  2017年   620篇
  2016年   762篇
  2015年   829篇
  2014年   1310篇
  2013年   1346篇
  2012年   1418篇
  2011年   1639篇
  2010年   1253篇
  2009年   1273篇
  2008年   1214篇
  2007年   1358篇
  2006年   1198篇
  2005年   1066篇
  2004年   844篇
  2003年   682篇
  2002年   573篇
  2001年   546篇
  2000年   451篇
  1999年   332篇
  1998年   278篇
  1997年   248篇
  1996年   176篇
  1995年   149篇
  1994年   108篇
  1993年   90篇
  1992年   74篇
  1991年   46篇
  1990年   44篇
  1989年   43篇
  1988年   19篇
  1987年   15篇
  1986年   14篇
  1985年   13篇
  1984年   18篇
  1983年   12篇
  1982年   13篇
  1981年   8篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1976年   8篇
  1964年   2篇
  1961年   2篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
1.
This paper presents a fast distance relay for series compensated transmission lines based on the R–L differential-equation algorithm using the theory of equal transfer process of transmission lines. The measuring distances based on the proposed algorithm can fast approach the actual value of fault distance when a fault occurs in front of the series capacitor. When a fault occurs behind of the series capacitor, the fault loop, including the series capacitor, does not match the R–L transmission line model, so the measuring distances fluctuate severely. Based on this, the relative position of the fault with respect to the series capacitor can be judged effectively according to the fluctuation range of the measuring distances, and the accurate fault location can be obtained fast. A variety of PSCAD/EMTDC simulation tests show that the new relay has fast operating speed and high accuracy when applied to the long series compensated transmission lines.  相似文献   
2.
ABSTRACT

This paper deals with asymptotic stabilisation of a class of nonlinear input-delayed systems via dynamic output feedback in the presence of disturbances. The proposed strategy has the structure of an observer-based control law, in which the observer estimates and predicts both the plant state and the external disturbance. A nominal delay value is assumed to be known and stability conditions in terms of linear matrix inequalities are derived for fast-varying delay uncertainties. Asymptotic stability is achieved if the disturbance or the time delay is constant. The controller design problem is also addressed and a numerical example with an unstable system is provided to illustrate the usefulness of the proposed strategy.  相似文献   
3.
在通讯设备爆炸式增长的时代,移动边缘计算作为5G通讯技术的核心技术之一,对其进行合理的资源分配显得尤为重要。移动边缘计算的思想是把云计算中心下沉到基站部署(边缘云),使云计算中心更加靠近用户,以快速解决计算资源分配问题。但是,相对于大型的云计算中心,边缘云的计算资源有限,传统的虚拟机分配方式不足以灵活应对边缘云的计算资源分配问题。为解决此问题,提出一种根据用户综合需求变化的动态计算资源和频谱分配算法(DRFAA),采用"分治"策略,并将资源模拟成"流体"资源进行分配,以寻求较大的吞吐量和较低的传输时延。实验仿真结果显示,动态计算资源和频谱分配算法可以有效地降低用户与边缘云之间的传输时延,也可以提高边缘云的吞吐量。  相似文献   
4.
刘越  周平 《信息与控制》2022,51(1):54-68
马尔可夫跳变线性系统(MJLS)是一种具有多个模态的随机系统,系统在各个模态之间的跳变转移由一组马尔可夫链来决定。MJLS模型因其在表示过程中可以产生突变而更能精确的描述实际工程应用中的系统。近年来,MJLS的最优控制问题成为了研究的热点,动态规划、极大值原理以及线性矩阵不等式等成为了解决此类问题的主流方法。本文对MJLS最优控制领域的研究现状进行了综述。分别对一般情况下、带有噪声的情况下、带有时滞的情况下以及某些特定情况下的MLJS最优控制问题的国内外研究现状进行论述。最后进行了总结并提出MJLS最优控制领域未来值得关注的研究方向。  相似文献   
5.
6.
7.
基于ABAQUS的显式动力学分析方法研究   总被引:1,自引:0,他引:1  
显式动力学(The Explicit Dynamic)是针对隐式求解器的一个补充,其分析方法对于求解广泛、各类非线性结构力学问题是一个非常有效的工具,显式方法中的单个增量步取决于模型的最高固有频率,与持续时间、载荷类型无关。ABAQUS/Explicit主要用于碰撞、接触以及失效分析。探讨了ABAQUS显式动力学的基本理论、求解的问题,对显示动力学分析方法中的求解算法、稳定时间极限和能量平衡问题进行研究,给出了显示动力学分析的一般性分析方法。通过案例验证了该方法的可行性,应用该方法可有效解决实际工业生产中的碰撞问题、复杂的接触问题以及复杂的后屈曲问题,可为显式动力学分析方法应用于工程实践奠定理论与方法基础。  相似文献   
8.
为了减小传统的最差情况设计方法引入的电压裕量,提出了一种变化可知的自适应电压缩减(AVS)技术,通过调整电源电压来降低电路功耗.自适应电压缩减技术基于检测关键路径的延时变化,基于此设计了一款预错误原位延时检测电路,可以检测关键路径延时并输出预错误信号,进而控制单元可根据反馈回的预错误信号的个数调整系统电压.本芯片采用SMIC180 nm工艺设计验证,仿真分析表明,采用自适应电压缩减技术后,4个目标验证电路分别节省功耗12.4%,11.3%,10.4%和11.6%.  相似文献   
9.
This article presents an adaptive neural compensation scheme for a class of large-scale time delay nonlinear systems in the presence of unknown dead zone, external disturbances, and actuator faults. In this article, the quadratic Lyapunov–Krasovskii functionals are introduced to tackle the system delays. The unknown functions of the system are estimated by using radial basis function neural networks. Furthermore, a disturbance observer is developed to approximate the external disturbances. The proposed adaptive neural compensation control method is constructed by utilizing a backstepping technique. The boundedness of all the closed-loop signals is guaranteed via Lyapunov analysis and the tracking errors are proved to converge to a small neighborhood of the origin. Simulation results are provided to illustrate the effectiveness of the proposed control approach.  相似文献   
10.
This paper presents a control design for the one‐phase Stefan problem under actuator delay via a backstepping method. The Stefan problem represents a liquid‐solid phase change phenomenon which describes the time evolution of a material's temperature profile and the interface position. The actuator delay is modeled by a first‐order hyperbolic partial differential equation (PDE), resulting in a cascaded transport‐diffusion PDE system defined on a time‐varying spatial domain described by an ordinary differential equation (ODE). Two nonlinear backstepping transformations are utilized for the control design. The setpoint restriction is given to guarantee a physical constraint on the proposed controller for the melting process. This constraint ensures the exponential convergence of the moving interface to a setpoint and the exponential stability of the temperature equilibrium profile and the delayed controller in the norm. Furthermore, robustness analysis with respect to the delay mismatch between the plant and the controller is studied, which provides analogous results to the exact compensation by restricting the control gain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号