首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17601篇
  免费   2917篇
  国内免费   1063篇
电工技术   121篇
综合类   1409篇
化学工业   10065篇
金属工艺   843篇
机械仪表   212篇
建筑科学   636篇
矿业工程   927篇
能源动力   871篇
轻工业   1344篇
水利工程   195篇
石油天然气   1349篇
武器工业   44篇
无线电   208篇
一般工业技术   1907篇
冶金工业   870篇
原子能技术   379篇
自动化技术   201篇
  2024年   72篇
  2023年   288篇
  2022年   553篇
  2021年   757篇
  2020年   800篇
  2019年   708篇
  2018年   716篇
  2017年   762篇
  2016年   859篇
  2015年   813篇
  2014年   1047篇
  2013年   1336篇
  2012年   1671篇
  2011年   1252篇
  2010年   943篇
  2009年   1010篇
  2008年   767篇
  2007年   1022篇
  2006年   1013篇
  2005年   714篇
  2004年   648篇
  2003年   565篇
  2002年   471篇
  2001年   393篇
  2000年   378篇
  1999年   277篇
  1998年   248篇
  1997年   234篇
  1996年   196篇
  1995年   145篇
  1994年   177篇
  1993年   130篇
  1992年   117篇
  1991年   92篇
  1990年   64篇
  1989年   58篇
  1988年   52篇
  1987年   48篇
  1986年   28篇
  1985年   34篇
  1984年   30篇
  1983年   21篇
  1982年   15篇
  1981年   7篇
  1980年   9篇
  1979年   4篇
  1977年   3篇
  1976年   2篇
  1959年   4篇
  1951年   26篇
排序方式: 共有10000条查询结果,搜索用时 484 毫秒
1.
The spongy nickel oxide (SNO) was synthesized the solution combustion method. The SNO was selected as a promoter to boost the catalytic activity of nanoraspberry-like palladium (NRPd) toward electrooxidation of five light fuels (LFs): methanol, ethanol, formaldehyde, formic acid, and ethylene glycol. The X-ray powder diffraction, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy, and field emission scanning electron microscope techniques were used for the materials characterization. In comparison with nonpromoted Pd, the NRPd-SNO electrocatalyst shown an excellent efficiency in parameters like the electrochemical active surface area and anti-CO poisoning behavior. The turnover data and the parameters, including reaction order, activation energy, and the coefficients of electron transfer and diffusion, were evaluated for the each process of LFs electrooxidation. The outcome for NRPd-SNO activity toward LFs electrooxidation was compared to some reported electrodes. The SNO increases the removal of intermediates created in the oxidation of LFs that can poison the surface of palladium catalyst. This is due to the presence of the lattice oxygens in SNO structure and Ni switching between its high and low valances. The compatibility of the adsorption process of LFs on the surface of the NRPd-SNO catalyst with different isotherms was determined by studying the Tafel polarization and calculating the surface coverage.  相似文献   
2.
3.
Poly(l ‐lactic acid) (PLLA) is a biodegradable and biocompatible thermoplastic polyester produced from renewable sources, widely used for biomedical devices, in food packaging and in agriculture. It is a semicrystalline polymer, and as such its properties are strongly affected by the developed semicrystalline morphology. As a function of the crystallization temperature, PLLA can form different crystal modifications, namely α′‐crystals below about 120 °C and α‐crystals at higher temperatures. The α′ modification is therefore of special importance as it may be the preferred polymorph developing at processing‐relevant conditions. It is a metastable modification which typically transforms into the more stable α‐crystals on annealing at elevated temperature. The structure, kinetics of formation and thermodynamics of α′‐ and α‐crystals of PLLA are reviewed in this contribution, together with the effect of α′‐/α‐crystal polymorphism on the properties of PLLA. © 2018 Society of Chemical Industry  相似文献   
4.
The SAFT-γ Mie group-contribution equation of state is used to represent the fluid-phase behavior of aqueous solutions of a variety of linear, branched, and cyclic amines. New group interactions are developed in order to model the mixtures of interest, including the like and unlike interactions between alkyl primary, secondary, and tertiary amine groups (NH2, NH, N), cyclic secondary and tertiary amine groups (cNH, cN), and cyclic methine-amine groups (cCHNH, cCHN) with water (H2O). The group-interaction parameters are estimated from appropriate experimental thermodynamic data for pure amines and selected mixtures. By taking advantage of the group-contribution nature of the method, one can describe the fluid-phase behavior of mixtures of molecules comprising those groups over broad ranges of temperature, pressure, and composition. A number of aqueous solutions of amines are studied including linear, branched aliphatic, and cyclic amines. Liquid–liquid equilibria (LLE) bounded by lower critical solution temperatures (LCSTs) have been reported experimentally and are reproduced here with the SAFT-γ Mie approach. The main feature of the approach is the ability not only to represent accurately the experimental data employed in the parameter estimation, but also to predict the vapor–liquid, liquid–liquid, and vapor–liquid–liquid equilibria, and LCSTs with the same set of parameters. Pure compound and binary phase diagrams of diverse types of amines and their aqueous solutions are assessed in order to demonstrate the main features of the thermodynamic and fluid-phase behavior.  相似文献   
5.
An ecofriendly and biodegradable porous structure was prepared from drying aqueous foams based on nano fibrillated cellulose (NFC), extracted from softwood pulp by subcritical water/CO2 treatment (SC-NFC). The primary aim of this work was to use the modified SC-NFC as stabilizer for a water-based Pickering emulsion which upon drying, yielded porous cellulosic materials, a good dye adsorbent. In order to exploit the carboxymethylated SC-NFC (CMSC-NFC, with a degree of substitution of 0.35 and a charge density of 649 μeqv/g) as a stabilizer for water-based Pickering emulsion in subsequent step, an optimized quantity of octyl amine (30 mg/g of SC-NFC) was added to make them partially hydrophobic. A series of dry foam structures were prepared by varying the concentrations of treated CMSC-NFCs and 4 wt% was found to be the optimum concentration to yield foam with high porosity (99%) and low density (0.038 g/cc) along with high compression strength (0.24 MPa), superior to the conventionally extracted NFC. The foams were applied to capture as high as 98% of methylene blue dyes, making them a potential green candidate for treating industrial effluent. In addition, the dye adsorption kinetics and isotherms were found to be well suited with second order kinetics and Langmuir isotherm models.  相似文献   
6.
To enhance chemical stability and suppress of aggregation of magnetite nanoparticles (MNPs), which are used as a support for thermoresponsive copolymer immobilization, silica coating of the MNPs is applied via the electrooxidation method. Although the resulting silica coated-MNPs also formed aggregates, the size distribution of the aggregate shifted to smaller size range. Because of that, the surface area available for copolymer immobilization increased approximately 6.7 times at maximum as compared with that of the uncoated MNPs. It contributed to the increase of the amount of the immobilized copolymer on the silica-coated MNPs, which is approximately four times larger than that on the uncoated MNPs. Fe3O4 dissolution test confirmed enhancement of chemical stability of MNPs. The thermoresponsive copolymer immobilized on the silica-coated MNPs shows the ability to recycle Cu(II) ion from Cu(II) containing solution by changing temperature with significantly shorter time than those in other thermoresponsive adsorbents in gel form.  相似文献   
7.
8.
Shale gas, as an important unconventional resource, has drawn global attention. It is mainly composed of adsorption gas and free gas. Adsorption gas content could play an important guiding role on both the selection of favorable perspective area and the exploration and exploitation of shale gas resources. In order to accurately measure adsorption gas content, a new approach was established to predict the adsorption isotherm of methane on shale. Based on the simplified local-density (SLD) method, both the adsorption isotherms of illite, illite/smectite mixed-layer, cholorite and type III kerogen and the total shale rock could be well fitted. The fitting results show good coincidences with the true experimental test data, which proves the method is reasonable and dependable and the prediction results are effective and credible. In addition, the good simulation results show that the SLD parameters can reflect the pore structure characteristics and corresponding adsorption characteristics of the shale samples, which can be used for the quantitative characterization of shale pore system.  相似文献   
9.
This paper presents an overview and examples of material design and development using (1) classical thermodynamics; (2) CALPHAD (calculation of phase diagrams) modeling; and (3) Integrated Computational Materials Engineering (ICME) approaches. Although the examples are given in lightweight aluminum and magnesium alloys for structural applications, the fundamental methodology and modeling principles are applicable to all materials and engineering applications. The examples in this paper have demonstrated the effectiveness and limitations of classical thermodynamics in solving specific problems (such as nucleation during solidification and solid-state precipitation in aluminum alloys). Computational thermodynamics and CALPHAD modeling, when combined with critical experimental validation, have been used to guide the selection and design of new magnesium alloys for elevated-temperature applications. The future of material design and development will be based on a holistic ICME approach. However, key challenges exist in many aspects of ICME framework, such as the lack of diffusion/mobility databases for many materials systems, limitation of current microstructural modeling capability and integration tools for simulation codes of different length scales.  相似文献   
10.
In this present work, Ca-alginate-biochar adsorbent has been synthesized, characterized and tested its effectiveness in the removal of aqueous phase Zn2+ metal. The removal efficiency was studied under various physicochemical process parameters. External mass transfer model, intraparticle diffusion model and pseudo-first-order and pseudo-second-order models were used to fit the experimental Zn2+ adoption kinetic results and to identify the mechanism of adsorption. The desorption studies indicate the possibilities of ion-exchange and physical–chemical adsorption of Zn2+. The adsorption was best described by Langmuir isotherm model. Thermodynamic parameters suggested that the adsorption process becomes spontaneous, endothermic and irreversible in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号